Suppr超能文献

通过不同的细胞周期进展模式预测干细胞命运变化。

Predicting stem cell fate changes by differential cell cycle progression patterns.

机构信息

Laboratory of Stem Cell Bioengineering, Institute of Bioengineering and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

Development. 2013 Jan 15;140(2):459-70. doi: 10.1242/dev.086215. Epub 2012 Nov 28.

Abstract

Stem cell self-renewal, commitment and reprogramming rely on a poorly understood coordination of cell cycle progression and execution of cell fate choices. Using existing experimental paradigms, it has not been possible to probe this relationship systematically in live stem cells in vitro or in vivo. Alterations in stem cell cycle kinetics probably occur long before changes in phenotypic markers are apparent and could be used as predictive parameters to reveal changes in stem cell fate. To explore this intriguing concept, we developed a single-cell tracking approach that enables automatic detection of cell cycle phases in live (stem) cells expressing fluorescent ubiquitylation-based cell-cycle indicator (FUCCI) probes. Using this tool, we have identified distinctive changes in lengths and fluorescence intensities of G1 (red fluorescence) and S/G2-M (green) that are associated with self-renewal and differentiation of single murine neural stem/progenitor cells (NSCs) and embryonic stem cells (ESCs). We further exploited these distinctive features using fluorescence-activated cell sorting to select for desired stem cell fates in two challenging cell culture settings. First, as G1 length was found to nearly double during NSC differentiation, resulting in progressively increasing red fluorescence intensity, we successfully purified stem cells from heterogeneous cell populations by their lower fluorescence. Second, as ESCs are almost exclusively marked by the green (S/G2-M) FUCCI probe due to their very short G1, we substantially augmented the proportion of reprogramming cells by sorting green cells early on during reprogramming from a NSC to an induced pluripotent stem cell state. Taken together, our studies begin to shed light on the crucial relationship between cell cycle progression and fate choice, and we are convinced that the presented approach can be exploited to predict and manipulate cell fate in a wealth of other mammalian cell systems.

摘要

干细胞的自我更新、定向分化和重编程依赖于细胞周期进程和细胞命运选择执行之间一种尚未被充分理解的协调作用。利用现有的实验范式,人们还不可能在体外或体内的活干细胞中系统地探测这种关系。干细胞周期动力学的改变很可能发生在表型标记发生变化之前,可以作为预测参数,揭示干细胞命运的变化。为了探索这一有趣的概念,我们开发了一种单细胞跟踪方法,该方法能够自动检测表达荧光泛素化细胞周期指示物(FUCCI)探针的活(干)细胞中的细胞周期相位。利用该工具,我们已经鉴定出与单个鼠神经干细胞/祖细胞(NSCs)和胚胎干细胞(ESCs)的自我更新和分化相关的 G1(红色荧光)和 S/G2-M(绿色荧光)的长度和荧光强度的独特变化。我们进一步利用这些独特的特征,使用荧光激活细胞分选(FACS)在两种具有挑战性的细胞培养环境中选择所需的干细胞命运。首先,由于 NSC 分化过程中 G1 长度几乎增加了一倍,导致红色荧光强度逐渐增加,我们通过降低荧光强度成功地从异质细胞群体中纯化出干细胞。其次,由于 ESCs 由于其非常短的 G1,几乎仅由绿色(S/G2-M)FUCCI 探针标记,我们通过在从 NSC 重编程为诱导多能干细胞状态的早期对绿色细胞进行分选,大大增加了重编程细胞的比例。总之,我们的研究开始揭示细胞周期进程和命运选择之间的关键关系,我们相信,所提出的方法可以用于预测和操纵其他丰富的哺乳动物细胞系统中的细胞命运。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验