Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, UCB, Brasília, DF, Brazil.
Biopolymers. 2012;98(4):280-7. doi: 10.1002/bip.22066.
Antimicrobial peptides (AMPs) are widely distributed defense molecules and represent a promising alternative for solving the problem of antibiotic resistance. Nevertheless, the experimental time required to screen putative AMPs makes computational simulations based on peptide sequence analysis and/or molecular modeling extremely attractive. Artificial intelligence methods acting as simulation and prediction tools are of great importance in helping to efficiently discover and design novel AMPs. In the present study, state-of-the-art published outcomes using different prediction methods and databases were compared to an adaptive neuro-fuzzy inference system (ANFIS) model. Data from our study showed that ANFIS obtained an accuracy of 96.7% and a Matthew's Correlation Coefficient (MCC) of0.936, which proved it to be an efficient model for pattern recognition in antimicrobial peptide prediction. Furthermore, a lower number of input parameters were needed for the ANFIS model, improving the speed and ease of prediction. In summary, due to the fuzzy nature ofAMP physicochemical properties, the ANFIS approach presented here can provide an efficient solution for screening putative AMP sequences and for exploration of properties characteristic of AMPs.
抗菌肽(AMPs)广泛分布于防御分子中,是解决抗生素耐药性问题的一种很有前途的替代方法。然而,筛选潜在 AMP 所需的实验时间使得基于肽序列分析和/或分子建模的计算模拟变得极具吸引力。作为模拟和预测工具的人工智能方法在帮助高效发现和设计新型 AMP 方面非常重要。在本研究中,使用不同的预测方法和数据库的最新发表结果与自适应神经模糊推理系统(ANFIS)模型进行了比较。我们研究的数据表明,ANFIS 获得了 96.7%的准确性和 0.936 的马修斯相关系数(MCC),这证明它是一种用于抗菌肽预测中模式识别的有效模型。此外,ANFIS 模型所需的输入参数数量更少,提高了预测的速度和便利性。总之,由于 AMP 理化性质的模糊性,这里提出的 ANFIS 方法可以为筛选潜在的 AMP 序列以及探索 AMP 特征性质提供有效的解决方案。