Suppr超能文献

具有三个阳离子结合位点的突变 NaK 通道中的非选择性传导。

Nonselective conduction in a mutated NaK channel with three cation-binding sites.

机构信息

Department of Medical Surgery and Bioengineering, University of Siena, Siena, Italy.

出版信息

Biophys J. 2012 Nov 21;103(10):2106-14. doi: 10.1016/j.bpj.2012.10.004. Epub 2012 Nov 20.

Abstract

The NaK channel is a cation-selective protein with similar permeability for K(+) and Na(+) ions. Crystallographic structures are available for the wild-type and mutated NaK channels with different numbers of cation-binding sites. We have performed a comparison between the potentials of mean force governing the translocation of K(+) ions and mixtures of one Na(+) and three K(+) ions in a mutated NaK channel with only three cation-binding sites (NaK-CNG). Since NaK-CNG is not selective for K(+) over Na(+), analysis of its multi-ion potential energy surfaces can provide clues about how selectivity originates. Comparison of the potentials of mean force of NaK-CNG and K(+)-selective channels yields observations that strongly suggest that the number of contiguous ion binding sites in a single-file mechanism is the key determinant of the channel's selectivity properties, as already proposed by experimental studies. We conclude that the presence of four binding sites in K(+)-selective channels is essential for highly selective and efficient permeation of K(+) ions, and that a key difference between K(+)-selective and nonselective channels is the absence/presence of a binding site for Na(+) ions at the boundary between S2 and S3 in the context of multi-ion permeation events.

摘要

钠钾通道是一种阳离子选择性蛋白,对 K(+) 和 Na(+) 离子具有相似的通透性。目前已有野生型和突变型钠钾通道的晶体结构,其阳离子结合位点数量不同。我们比较了在只有三个阳离子结合位点的突变型钠钾通道(NaK-CNG)中,K(+) 离子和一个 Na(+) 和三个 K(+) 离子混合物的迁移势能。由于 NaK-CNG 对 K(+) 没有选择性,因此分析其多离子势能表面可以提供有关选择性起源的线索。NaK-CNG 和 K(+)-选择性通道的平均力势的比较观察结果强烈表明,在单链机制中连续的离子结合位点的数量是通道选择性特性的关键决定因素,这与实验研究已经提出的观点一致。我们得出的结论是,在 K(+)-选择性通道中存在四个结合位点对于 K(+) 离子的高选择性和高效渗透是必不可少的,而 K(+)-选择性和非选择性通道之间的一个关键区别是在多离子渗透事件中,S2 和 S3 之间的边界处是否存在 Na(+) 离子的结合位点。

相似文献

1
Nonselective conduction in a mutated NaK channel with three cation-binding sites.
Biophys J. 2012 Nov 21;103(10):2106-14. doi: 10.1016/j.bpj.2012.10.004. Epub 2012 Nov 20.
2
Gating at the selectivity filter of ion channels that conduct Na+ and K+ ions.
Biophys J. 2011 Oct 5;101(7):1623-31. doi: 10.1016/j.bpj.2011.08.035.
3
Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):598-602. doi: 10.1073/pnas.1013636108. Epub 2010 Dec 27.
4
A single NaK channel conformation is not enough for non-selective ion conduction.
Nat Commun. 2018 Feb 19;9(1):717. doi: 10.1038/s41467-018-03179-y.
6
Atomic structure of a Na+- and K+-conducting channel.
Nature. 2006 Mar 23;440(7083):570-4. doi: 10.1038/nature04508. Epub 2006 Feb 8.
7
Selectivity of a Singly Permeating Ion in Nonselective NaK Channel: Combined QM and MD Based Investigations.
J Phys Chem B. 2015 Oct 8;119(40):12783-97. doi: 10.1021/acs.jpcb.5b05996. Epub 2015 Sep 30.
9
Structural analysis of ion selectivity in the NaK channel.
Nat Struct Mol Biol. 2009 Jan;16(1):35-41. doi: 10.1038/nsmb.1537. Epub 2008 Dec 21.
10
Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15366-71. doi: 10.1073/pnas.1515965112. Epub 2015 Nov 30.

引用本文的文献

1
Early Steps in C-Type Inactivation of the hERG Potassium Channel.
J Chem Inf Model. 2023 Jan 9;63(1):251-258. doi: 10.1021/acs.jcim.2c01028. Epub 2022 Dec 13.
2
Selectivity filter modalities and rapid inactivation of the hERG1 channel.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):2795-2804. doi: 10.1073/pnas.1909196117. Epub 2020 Jan 24.
3
Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.
Biophys J. 2016 Sep 20;111(6):1214-1222. doi: 10.1016/j.bpj.2016.08.009.
4
A structural, functional, and computational analysis suggests pore flexibility as the base for the poor selectivity of CNG channels.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3619-28. doi: 10.1073/pnas.1503334112. Epub 2015 Jun 22.
5
K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations.
Biophys J. 2013 Oct 15;105(8):1737-45. doi: 10.1016/j.bpj.2013.08.049.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
On conduction in a bacterial sodium channel.
PLoS Comput Biol. 2012;8(4):e1002476. doi: 10.1371/journal.pcbi.1002476. Epub 2012 Apr 5.
3
Molecular dynamics simulations of the TrkH membrane protein.
Biochemistry. 2012 Feb 28;51(8):1559-65. doi: 10.1021/bi201586n. Epub 2012 Feb 14.
4
On the selective ion binding hypothesis for potassium channels.
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17963-8. doi: 10.1073/pnas.1110735108. Epub 2011 Oct 19.
5
Gating at the selectivity filter of ion channels that conduct Na+ and K+ ions.
Biophys J. 2011 Oct 5;101(7):1623-31. doi: 10.1016/j.bpj.2011.08.035.
6
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.
7
Examining ion channel properties using free-energy methods.
Methods Enzymol. 2009;466:155-77. doi: 10.1016/S0076-6879(09)66007-9. Epub 2009 Nov 13.
8
Selectivity and permeation of alkali metal ions in K+-channels.
J Mol Biol. 2011 Jun 24;409(5):867-78. doi: 10.1016/j.jmb.2011.04.043. Epub 2011 Apr 22.
9
Crystal structure of a potassium ion transporter, TrkH.
Nature. 2011 Mar 17;471(7338):336-40. doi: 10.1038/nature09731. Epub 2011 Feb 13.
10
Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):598-602. doi: 10.1073/pnas.1013636108. Epub 2010 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验