Suppr超能文献

用于体外仿生切应力依赖的白细胞黏附测定的微流控技术。

Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays.

机构信息

LaBS-Laboratory of Biological Structure Mechanics, Department of Structural Engineering, Politecnico di Milano, Milan, Italy.

出版信息

J Biomech. 2013 Jan 18;46(2):276-83. doi: 10.1016/j.jbiomech.2012.10.024. Epub 2012 Nov 30.

Abstract

Recruitment of leukocytes from blood to tissues is a multi-step process playing a major role in the activation of inflammatory responses. Tethering and rolling of leukocytes along the vessel wall, followed by arrest and transmigration through the endothelium result from chemoattractant-dependent signals, inducing adhesive and migratory events. Shear forces exerted by the blood flow on leukocytes induce rolling via selectin-mediated interactions with endothelial cells and increase the probability of leukocytes to engage their chemokine receptors, facilitating integrin activation and consequent arrest. Flow-derived shear forces generate mechanical stimuli concurring with biochemical signals in the modulation of leukocyte-endothelial cell interactions. In the last few years, a host of in vitro studies have clarified the biochemical adhesion cascade and the role of shear stress in leukocyte extravasation. The limitation of the static environment in Boyden devices has been overcome both by the use of parallel-plate flow chambers and by custom models mimicking the in vivo conditions, along with widespread microfluidic approaches to in vitro modeling. These devices create an in vitro biomimetic environment where the multi-step transmigration process can be imaged and quantified under mechanical and biochemical controlled conditions, including fluid dynamic settings, channel design, materials and surface coatings. This paper reviews the technological solutions recently proposed to model, observe and quantify leukocyte adhesion behavior under shear flow, with a final survey of high-throughput solutions featuring multiple parallel assays as well as thorough and time-saving statistical interpretation of the experimental results.

摘要

白细胞从血液到组织的募集是一个多步骤的过程,在炎症反应的激活中起着主要作用。白细胞沿着血管壁的连接和滚动,随后通过内皮细胞的停滞和迁移,是由趋化因子依赖性信号诱导的,引发黏附和迁移事件。血流对白细胞施加的剪切力通过选择素与内皮细胞的相互作用诱导滚动,并增加白细胞与趋化因子受体结合的可能性,促进整合素的激活和随后的停滞。源自流动的机械力与生物化学信号共同调节白细胞-内皮细胞相互作用。在过去的几年中,大量的体外研究阐明了白细胞黏附级联的生化过程以及剪切力在白细胞渗出中的作用。使用平行板流动室和模拟体内条件的定制模型以及广泛的微流体方法进行体外建模,克服了 Boyden 装置中静态环境的限制。这些设备创建了一个体外仿生环境,可以在机械和生化控制条件下对多步迁移过程进行成像和定量,包括流体动力学设置、通道设计、材料和表面涂层。本文综述了最近提出的用于模拟、观察和量化剪切流下单核细胞黏附行为的技术解决方案,并对具有多个平行分析的高通量解决方案以及对实验结果进行全面和节省时间的统计解释进行了最终调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验