Suppr超能文献

双随机相位编码的高效文本加密与隐藏。

Efficient text encryption and hiding with double-random phase-encoding.

机构信息

School of Software Engineering, Chongqing University, Chongqing 401331, China.

出版信息

Sensors (Basel). 2012 Oct 1;12(10):13441-57. doi: 10.3390/s121013441.

Abstract

In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level.

摘要

本文提出了一种基于双随机相位编码技术的文本加密和隐藏方法。首先,将秘密文本转换为二维数组,并使用变换数组中元素的高位存储秘密文本的位流,而低位则填充特定值。然后,用双随机相位编码技术对变换后的数组进行编码。最后,将编码后的数组叠加到扩展的宿主图像上,以获得嵌入隐藏数据的图像。通过分析建模和测试数据流对所提出的技术的性能进行了测试,包括隐藏容量、秘密文本的恢复精度以及嵌入隐藏数据的图像的质量。实验结果表明,通过适当选择将秘密文本转换为数组的方法和叠加系数,可以准确或几乎准确地恢复秘密文本,同时保持嵌入隐藏数据的宿主图像的质量。通过使用光学信息处理技术,发现该方法可以显著提高文本信息传输的安全性,同时在规定的隐藏容量水平下保证安全性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c81/3545574/2dfd9a45d357/sensors-12-13441f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验