Graduate School of Doshisha University, Tatara, Kyotanabe, Kyoto 6100321, Japan.
Sensors (Basel). 2012 Oct 29;12(11):14489-507. doi: 10.3390/s121114489.
This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.
本文提出了一种使用一组彼此相邻的移动机器人的户外基于激光的行人跟踪系统。每个机器人都使用基于占据网格的方法从其自己的激光扫描图像中检测行人,并通过卡尔曼滤波和基于全局最近邻 (GNN) 的数据关联来跟踪检测到的行人。跟踪数据通过互通信广播到多个机器人,并使用协方差交叉 (CI) 方法进行组合。对于行人跟踪,每个机器人使用实时运动学 GPS (RTK-GPS) 和激光扫描匹配来识别自己的姿态。使用我们的协作跟踪方法,所有机器人都相互共享跟踪数据;因此,单个机器人始终可以识别任何其他机器人都看不见的行人。仿真和实验结果表明,协作跟踪提供的跟踪性能优于传统的单个跟踪。我们的跟踪系统以去中心化的方式运行,无需任何中央服务器,因此,这提供了传统集中式架构无法实现的可扩展性和鲁棒性。