Centro de Automática y Robótica, UPM-CSIC, Calle José Gutiérrez Abascal, Madrid 28006, Spain.
Sensors (Basel). 2013 Sep 4;13(9):11603-35. doi: 10.3390/s130911603.
This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method.
本文提出了一种可应用于移动平台的人体检测系统,用于自主监控大型户外基础设施。该预测基于两个检测模块的融合,一个用于激光,另一个用于视觉数据。在激光模块中,提出了一种新的特征集,更好地封装了由于噪声、距离和人体姿势引起的变化。这增强了系统的泛化能力,同时与当前方法相比,提高了户外性能。视觉模块使用方向梯度直方图描述符和线性支持向量机分类器的组合。当前的方法使用固定大小的投影,根据激光测距仪的距离信息在图像数据上定义感兴趣区域。当应用于小型无人地面车辆时,由于平台振动和地形不规则,这些技术会出现失准问题。通过使用基于分类器性能概率公式的新型自适应投影技术,有效地解决了这个问题。最后,引入了概率校准步骤,以最优地融合两个模块的信息。在真实环境下的实验证明了所提出方法的鲁棒性。