Suppr超能文献

利用基因型与环境互作对了解小麦的根系深度和穿透硬土的能力。

Use of genotype x environment interactions to understand rooting depth and the ability of wheat to penetrate hard soils.

机构信息

Tasmanian Institute of Agriculture, Private Bag 54, University of Tasmania, Hobart, TAS 7001, Australia.

出版信息

Ann Bot. 2013 Jul;112(2):359-68. doi: 10.1093/aob/mcs251. Epub 2012 Nov 29.

Abstract

BACKGROUND

Root systems are well-recognized as complex and a variety of traits have been identified as contributing to plant adaptation to the environment. A significant proportion of soil in south-western Australia is prone to the formation of hardpans of compacted soil that limit root exploration and thus access to nutrients and water for plant growth. Genotypic variation has been reported for root-penetration ability of wheat in controlled conditions, which has been related to field performance in these environments. However, research on root traits in field soil is recognized as difficult and labour intensive. Pattern analysis of genotype × environment (G × E) interactions is one approach that enables interpretation of these complex relationships, particularly when undertaken with probe genotypes with well-documented traits, in this case, for the ability to penetrate a wax layer. While the analytical approach is well-established in the scientific literature, there are very few examples of pattern analysis for G × E interactions applied to root traits of cereal crops.

SCOPE

In this viewpoint, we aim to review the approach of pattern analysis for G × E interaction and the importance of environment and genotype characterization, with a focus on root traits. We draw on our research on G × E interaction for root depth and related studies on genotypic evaluation for root-penetration ability. In doing so, we wish to explore how pattern analysis can aid in the interpretation of complex root traits and their interaction with the environment and how this may explain patterns of adaptation and inform future research.

CONCLUSIONS

With appropriate characterization of environments and genotypes, the G × E approach can be used to aid in the interpretation of the complex interactions of root systems with the environment, inform future research and therefore provide supporting evidence for selecting specific root traits for target environments in a crop breeding programme.

摘要

背景

根系被公认为是复杂的,并且已经确定了多种特征有助于植物适应环境。澳大利亚西南部的很大一部分土壤容易形成紧实土壤的硬结,限制了根系的探索,从而限制了植物生长所需的养分和水分的获取。已经报道了在受控条件下小麦根系穿透能力的基因型变异,这与这些环境中的田间表现有关。然而,在田间土壤中研究根系特性被认为是困难且劳动强度大的。基因型与环境(G × E)互作的模式分析是一种解释这些复杂关系的方法,特别是在使用具有良好记录特征的探针基因型进行时,在这种情况下,是为了穿透蜡层的能力。虽然这种分析方法在科学文献中已经得到很好的建立,但很少有应用于谷物作物根系特性的 G × E 互作模式分析的例子。

范围

在本观点中,我们旨在回顾 G × E 互作模式分析的方法以及环境和基因型特征化的重要性,重点是根系特性。我们借鉴了我们关于根系深度的 G × E 互作和根穿透能力的基因型评价的相关研究。通过这样做,我们希望探讨模式分析如何帮助解释复杂的根系特性及其与环境的相互作用,以及这如何解释适应模式并为未来的研究提供信息。

结论

通过对环境和基因型进行适当的特征化,G × E 方法可用于帮助解释根系与环境之间复杂的相互作用,为未来的研究提供信息,从而为在作物育种计划中为目标环境选择特定的根系特性提供支持证据。

相似文献

4
Root traits and root biomass allocation impact how wheat genotypes respond to organic amendments and earthworms.
PLoS One. 2018 Jul 24;13(7):e0200646. doi: 10.1371/journal.pone.0200646. eCollection 2018.
5
Multiseriate cortical sclerenchyma enhance root penetration in compacted soils.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2012087118.
6
Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.
J Exp Bot. 2012 May;63(9):3485-98. doi: 10.1093/jxb/ers111. Epub 2012 May 2.
7
Soil strength influences wheat root interactions with soil macropores.
Plant Cell Environ. 2020 Jan;43(1):235-245. doi: 10.1111/pce.13659. Epub 2019 Oct 30.
9
Variability of root traits in spring wheat germplasm.
PLoS One. 2014 Jun 19;9(6):e100317. doi: 10.1371/journal.pone.0100317. eCollection 2014.

引用本文的文献

1
A Major Root Architecture QTL Responding to Water Limitation in Durum Wheat.
Front Plant Sci. 2019 Apr 10;10:436. doi: 10.3389/fpls.2019.00436. eCollection 2019.
4
Matching roots to their environment.
Ann Bot. 2013 Jul;112(2):207-22. doi: 10.1093/aob/mct123.

本文引用的文献

1
Root phenomics of crops: opportunities and challenges.
Funct Plant Biol. 2009 Nov;36(11):922-929. doi: 10.1071/FP09150.
2
Accuracy and selection success in yield trial analyses.
Theor Appl Genet. 1989 Apr;77(4):473-81. doi: 10.1007/BF00274266.
3
Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
Ann Bot. 2012 Jul;110(2):259-70. doi: 10.1093/aob/mcs118. Epub 2012 Jun 8.
4
The distribution and abundance of wheat roots in a dense, structured subsoil--implications for water uptake.
Plant Cell Environ. 2010 Feb;33(2):133-48. doi: 10.1111/j.1365-3040.2009.02059.x. Epub 2009 Nov 4.
5
Root system architecture: opportunities and constraints for genetic improvement of crops.
Trends Plant Sci. 2007 Oct;12(10):474-81. doi: 10.1016/j.tplants.2007.08.012. Epub 2007 Sep 5.
6
Comparative DNA sequence analysis of wheat and rice genomes.
Genome Res. 2003 Aug;13(8):1818-27. doi: 10.1101/gr.1113003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验