Suppr超能文献

寻找三阴性导管原位癌:乳腺癌从导管原位癌进展为浸润性癌的肿瘤类型依赖模型。

In search of triple-negative DCIS: tumor-type dependent model of breast cancer progression from DCIS to the invasive cancer.

作者信息

Kurbel Sven

机构信息

Department of Physiology, Osijek Medical Faculty, J Huttlera 4, 31000, Osijek, Croatia.

出版信息

Tumour Biol. 2013 Feb;34(1):1-7. doi: 10.1007/s13277-012-0602-1. Epub 2012 Dec 4.

Abstract

This paper is based on the idea that ductal breast cancer in situ (DCIS) precedes the invasive breast cancer (invBC), although the triple-negative invBCs almost lack their DCIS precursor. Reported incidences of breast tumor types in DCIS and in invasive BCs suggest that probabilities of tumor progression might differ among tumor types, and these differences can have some impact on our patients. Reported data from several papers on incidences of the four breast tumor types-luminal A, luminal B, HER2, and triple negative-are used to compare tumor-type incidences for DCIS and for the invasive BC. The pooled distributions differed (Χ (2) = 97.05, p < 0.0001), suggesting a strong selection pressure that reduces the number of triple-negative DCIS lesions at the time of breast tumor diagnosis. Reported shares of DCIS in all newly diagnosed breast cancers range in large screening trials from 9 to 26 %, so in making a population model, three values are arbitrarily chosen: one DCIS out of ten breast cancers (the 10 % share), one DCIS out of seven breast cancers (one seventh or the 14.3 % share), and one out of five (the 20 % share). By using these shares and the pooled data of tumor-type incidences, values are calculated that would be expected from a hypothetical population in which types of DCIS and invasive BC are distributed accordingly to the reported incidences. The model predicts that the shares of breast cancer tumor types in the modeled population (DCIS plus invasive BCs) are 39 % for luminal A, 20 % for luminal B, 11 % for HER2 positive, and 30 % for the triple-negative cancers. Some 59 % of all breast tumors are expected to be hormone receptor positive, and HER2 to be overexpressed in 31 %. Simulated probabilities of tumor progression were used to calculate the number of tumor progression t(1/2) that has passed before the time of diagnosis. Calculated relative t(1/2) durations in the modeled population suggest that the triple-negative DCIS cases were fastest in tumor progression, three times faster than the HER2-positive tumors and near twice as fast as luminal A. Luminal A is the model slower than luminal B DCIS, suggesting that although their progression depends on estrogen exposure, HER2 overexpression in luminal B tumors adds some speed in tumor progression. The model results suggest that quick tumor progression might be the main feature of the triple-negative breast tumors, leading to seldom triple-negative DCIS at the time of breast cancer diagnosis. Applying approach of the presented model to the real data from a well-defined population seems warranted.

摘要

本文基于这样一种观点,即乳腺导管原位癌(DCIS)先于浸润性乳腺癌(invBC)出现,尽管三阴性浸润性乳腺癌几乎没有其DCIS前驱病变。DCIS和浸润性乳腺癌中报告的乳腺肿瘤类型发病率表明,不同肿瘤类型的肿瘤进展概率可能不同,而这些差异可能会对我们的患者产生一定影响。来自几篇关于四种乳腺肿瘤类型(腔面A型、腔面B型、HER2型和三阴性)发病率的论文所报告的数据,被用于比较DCIS和浸润性乳腺癌的肿瘤类型发病率。合并分布存在差异(Χ(2)=97.05,p<0.0001),这表明存在强大的选择压力,在乳腺肿瘤诊断时减少了三阴性DCIS病变的数量。在大型筛查试验中,DCIS在所有新诊断乳腺癌中的报告占比范围为9%至26%,因此在构建总体模型时,任意选择了三个值:每十例乳腺癌中有一例DCIS(10%的占比)、每七例乳腺癌中有一例DCIS(七分之一或14.3%的占比)以及每五例中有一例(20%的占比)。通过使用这些占比以及肿瘤类型发病率的合并数据,可以计算出一个假设总体中预期的值,在该总体中DCIS和浸润性乳腺癌的类型按照报告的发病率进行分布。该模型预测,在模拟总体(DCIS加浸润性乳腺癌)中,腔面A型乳腺癌肿瘤类型的占比为39%,腔面B型为20%,HER2阳性为11%,三阴性癌症为30%。预计所有乳腺肿瘤中约59%为激素受体阳性,31%的肿瘤HER2过表达。使用模拟的肿瘤进展概率来计算在诊断时之前已经过去的肿瘤进展t(1/2)数量。在模拟总体中计算出的相对t(1/2)持续时间表明,三阴性DCIS病例的肿瘤进展最快,比HER2阳性肿瘤快三倍,几乎是腔面A型的两倍。腔面A型在模型中比腔面B型DCIS进展慢,这表明尽管它们的进展取决于雌激素暴露,但腔面B型肿瘤中的HER2过表达在肿瘤进展中增加了一定速度。模型结果表明,快速的肿瘤进展可能是三阴性乳腺肿瘤的主要特征,导致在乳腺癌诊断时很少出现三阴性DCIS。将所提出模型的方法应用于来自明确总体的实际数据似乎是有必要的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验