Kepler T B, Marder E, Abbott L F
Department of Biology, Brandeis University, Waltham, MA 02254.
Science. 1990 Apr 6;248(4951):83-5. doi: 10.1126/science.2321028.
Neurons with oscillatory properties are a common feature of the nervous system, but little is known about how neural oscillators shape the behavior of neuronal networks or how network interactions influence the properties of neural oscillators. Mathematical models are used to examine the effect of electrically coupling an oscillatory neuron to a second neuron that is either silent or tonically firing. Models of oscillatory neurons with varying degrees of complexity show that this coupling can either increase or decrease the frequency of an oscillator, depending on its membrane potential wave form, the state of the neuron to which it is coupled, and the strength of the coupling. Thus, electrical coupling provides a flexible mechanism for modifying the behavior of an oscillatory neural network.
具有振荡特性的神经元是神经系统的一个常见特征,但对于神经振荡器如何塑造神经元网络的行为,或者网络相互作用如何影响神经振荡器的特性,我们知之甚少。数学模型被用于研究将一个振荡神经元与另一个静止或持续放电的神经元进行电耦合的效果。具有不同复杂程度的振荡神经元模型表明,这种耦合可以增加或降低振荡器的频率,这取决于其膜电位波形、与之耦合的神经元的状态以及耦合强度。因此,电耦合为改变振荡神经网络的行为提供了一种灵活的机制。