Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
ACS Nano. 2013 Jan 22;7(1):183-90. doi: 10.1021/nn303632n. Epub 2012 Dec 12.
We present a novel microchip-based approach to combine the synthesis, characterization, and utilization of different functional materials on a single platform. A two-layer microfluidic device comprising 10 parallel actuated reaction chambers with volumes of a few hundred picoliters is used to localize and confine the synthesis, while the surfaces of the reaction chambers comprise an electrode array for direct integration and further characterization of the created crystalline assemblies without the need for further manipulation or positioning devices. First we visualized and evaluated the dynamics of our method by monitoring the formation of a fluorescent metal-organic complex (Zn(bix)). Next, we induced the site-specific growth of two types of organic conductive crystals, AuTTF and AgTCNQ, directly onto the electrode arrays in one- and two-step reactions, respectively. The performance of the created AgTCNQ crystals as memory elements was thoroughly examined. Moreover, we proved for first time that AuTTF composites can be used as label-free sensing elements.
我们提出了一种基于微芯片的新方法,可将不同功能材料的合成、表征和利用在单个平台上结合起来。使用由 10 个平行驱动的反应室组成的双层微流控装置,每个反应室的体积为几百皮升,用于局部化和限制合成,而反应室的表面包含电极阵列,用于直接集成和进一步表征所创建的晶态组装体,而无需进一步的操作或定位设备。首先,我们通过监测荧光金属有机配合物(Zn(bix))的形成来可视化和评估我们方法的动力学。接下来,我们分别在一步和两步反应中,将两种类型的有机导电晶体 AuTTF 和 AgTCNQ 直接诱导在电极阵列上进行定点生长。我们彻底研究了所创建的 AgTCNQ 晶体作为存储元件的性能。此外,我们首次证明 AuTTF 复合材料可用作无标记传感元件。