Balankin Alexander S, Mena Baltasar, Martínez-González C L, Matamoros Daniel Morales
Grupo Mecánica Fractal, Instituto Politécnico Nacional, México Distrito Federal 07738, Mexico.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):052101. doi: 10.1103/PhysRevE.86.052101. Epub 2012 Nov 26.
We point out that the chemical space of a totally disconnected Cantor dust K(n) [Symbol: see text E(n) is a compact metric space C(n) with the spectral dimension d(s) = d(ℓ) = n > D, where D and d(ℓ) = n are the fractal and chemical dimensions of K(n), respectively. Hence, we can define a random walk in the chemical space as a Markovian Gaussian process. The mapping of a random walk in C(n) into K(n) [Symbol: see text] E(n) defines the quenched Lévy flight on the Cantor dust with a single step duration independent of the step length. The equations, describing the superdiffusion and diffusion-reaction front propagation ruled by the local quenched Lévy flight on K(n) [Symbol: see text] E(n), are derived. The use of these equations to model superdiffusive phenomena, observed in some physical systems in which propagators decay faster than algebraically, is discussed.
我们指出,完全不连通的康托尘K(n) [符号:见正文] E(n)的化学空间是一个紧致度量空间C(n),其谱维数d(s) = d(ℓ) = n > D,其中D和d(ℓ) = n分别是K(n)的分形维和化学维。因此,我们可以将化学空间中的随机游走定义为一个马尔可夫高斯过程。C(n)中随机游走到K(n) [符号:见正文] E(n)的映射定义了康托尘上的淬火列维飞行,其单步持续时间与步长无关。推导了描述由K(n) [符号:见正文] E(n)上的局部淬火列维飞行所支配的超扩散和扩散 - 反应前沿传播的方程。讨论了使用这些方程对在一些物理系统中观察到的超扩散现象进行建模,在这些系统中传播子的衰减比代数衰减更快。