Department of Physics, Faculty of Science, University of Zagreb, P.O. Box 331, HR-10002 Zagreb, Croatia.
Phys Rev Lett. 2012 Nov 16;109(20):208701. doi: 10.1103/PhysRevLett.109.208701. Epub 2012 Nov 14.
Large scale traffic networks are an indispensable part of contemporary human mobility and international trade. Networks of airport travel and cargo ship movements are invaluable for the understanding of human mobility patterns [R. Guimera et al., Proc. Natl. Acad. Sci. U.S.A. 102, 7794 (2005))], epidemic spreading [V. Colizza et al., Proc. Natl. Acad. Sci. U.S.A. 103, 2015 (2006)], global trade [International Maritime Organization, http://www.imo.org/], and spread of invasive species [G. M. Ruiz et al., Nature (London) 408, 49 (2000)]. Different studies [M. Barthelemy, Phys. Rept. 499, 1 (2011)] point to the universal character of some of the exponents measured in such networks. Here we show that exponents which relate (i) the strength of nodes to their degree and (ii) weights of links to degrees of nodes that they connect have a geometric origin. We present a simple robust model which exhibits the observed power laws and relates exponents to the dimensionality of 2D space in which traffic networks are embedded. We show that the relation between weight strength and degree is s(k)k(3/2), the relation between distance strength and degree is s(d)(k)k(3/2), and the relation between weight of link and degrees of linked nodes is w(ij)~(k(i)k(j))(1/2) on the plane 2D surface. We further analyze the influence of spherical geometry, relevant for the whole planet, on exact values of these exponents. Our model predicts that these exponents should be found in future studies of port networks and it imposes constraints on more refined models of port networks.
大规模交通网络是当代人类流动和国际贸易不可或缺的一部分。机场旅行和货船运输网络对于理解人类流动模式[R. Guimera 等人,Proc. Natl. Acad. Sci. U.S.A. 102, 7794 (2005)]、传染病传播[V. Colizza 等人,Proc. Natl. Acad. Sci. U.S.A. 103, 2015 (2006)]、全球贸易[国际海事组织,http://www.imo.org/]和入侵物种的传播[G. M. Ruiz 等人,自然(伦敦)408, 49 (2000)]都非常重要。不同的研究[M. Barthelemy,Phys. Rept. 499, 1 (2011)]指出,在这些网络中测量的一些指数具有普遍特征。在这里,我们表明,与(i)节点强度与其度数以及(ii)连接节点的链路权重与其连接的节点度数相关的指数具有几何起源。我们提出了一个简单而稳健的模型,该模型表现出所观察到的幂律,并将指数与交通网络嵌入的 2D 空间的维度联系起来。我们表明,强度与度数之间的关系为 s(k)k(3/2),距离强度与度数之间的关系为 s(d)(k)k(3/2),链路权重与连接节点的度数之间的关系为 w(ij)~(k(i)k(j))(1/2)在二维表面上。我们进一步分析了整个星球相关的球面几何对这些指数的确切值的影响。我们的模型预测,这些指数应该在未来的港口网络研究中被发现,并对更精细的港口网络模型施加了约束。