Suppr超能文献

复杂网络中距离的通用标度律。

Universal scaling of distances in complex networks.

作者信息

Hołyst Janusz A, Sienkiewicz Julian, Fronczak Agata, Fronczak Piotr, Suchecki Krzysztof

机构信息

Faculty of Physics and Center of Excellence for Complex Systems Research, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026108. doi: 10.1103/PhysRevE.72.026108. Epub 2005 Aug 8.

Abstract

Universal scaling of distances between vertices of Erdos-Rényi random graphs, scale-free Barabási-Albert models, science collaboration networks, biological networks, Internet Autonomous Systems and public transport networks are observed. A mean distance between two nodes of degrees k(i) and k(j) equals to (l(ij)) = A - B log(k(i)k(j)). The scaling is valid over several decades. A simple theory for the appearance of this scaling is presented. Parameters A and B depend on the mean value of a node degree (k)nn calculated for the nearest neighbors and on network clustering coefficients.

摘要

人们观察到,在厄多斯-雷尼随机图、无标度巴拉巴西-阿尔伯特模型、科学合作网络、生物网络、互联网自治系统和公共交通网络中,顶点之间的距离存在普遍缩放现象。度为k(i)和k(j)的两个节点之间的平均距离等于(l(ij)) = A - B log(k(i)k(j))。这种缩放关系在几十年内都是有效的。本文提出了一个关于这种缩放现象出现的简单理论。参数A和B取决于为最近邻计算的节点度(k)nn的平均值以及网络聚类系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验