Suppr超能文献

转录组步移:一种基于实验室的、面向图形用户界面的从深度测序数据中鉴定mRNA的方法。

Transcriptome walking: a laboratory-oriented GUI-based approach to mRNA identification from deep-sequenced data.

作者信息

French Andrew S

机构信息

Department of Physiology and Biophysics, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.

出版信息

BMC Res Notes. 2012 Dec 5;5:673. doi: 10.1186/1756-0500-5-673.

Abstract

BACKGROUND

Deep sequencing technology provides efficient and economical production of large numbers of randomly positioned, relatively short, estimates of base identities in DNA molecules. Application of this technology to mRNA samples allows rapid examination of the molecular genetic environment in individual cells or tissues, the transcriptome. However, assembly of such short sequences into complete mRNA creates a challenge that limits the usefulness of the technology, particularly when no, or limited, genomic data is available. Several approaches to this problem have been developed, but there is still no general method to rapidly obtain an mRNA sequence from deep sequence data when a specific molecule, or family of molecules, are of interest. A frequent requirement is to identify specific mRNA molecules from tissues that are being investigated by methods such as electrophysiology, immunocytology and pharmacology. To be widely useful, any approach must be relatively simple to use in the laboratory by operators without extensive statistical or bioinformatics knowledge, and with readily available hardware.

FINDINGS

An approach was developed that allows de novo assembly of individual mRNA sequences in two linked stages: sequence discovery and sequence completion. Both stages rely on computer assisted, Graphical User Interface (GUI)-guided, user interaction with the data, but proceed relatively efficiently once discovery is complete. The method grows a discovered sequence by repeated passes through the complete raw data in a series of steps, and is hence termed 'transcriptome walking'. All of the operations required for transcriptome analysis are combined in one program that presents a relatively simple user interface and runs on a standard desktop, or laptop computer, but takes advantage of multi-core processors, when available. Complete mRNA sequence identifications usually require less than 24 hours. This approach has already identified previously unknown mRNA sequences in two animal species that currently lack any significant genome or transcriptome data.

CONCLUSIONS

As deep sequencing data becomes more widely available, accessible methods for extracting useful sequence information in the biological or medical laboratory will be of increasing importance. The approach described here does not rely on detailed knowledge of bioinformatic algorithms, and allows users with basic knowledge of molecular biology and standard laboratory computing equipment, but limited software or bioinformatics experience, to extract complete gene sequences from deep-sequencing data.

摘要

背景

深度测序技术能高效且经济地生成大量随机定位的、相对较短的DNA分子碱基序列信息。将该技术应用于mRNA样本,可快速检测单个细胞或组织中的分子遗传环境,即转录组。然而,将这些短序列组装成完整的mRNA颇具挑战,限制了该技术的实用性,尤其是在没有或仅有有限基因组数据的情况下。针对此问题已开发出多种方法,但当关注特定分子或分子家族时,仍缺乏一种从深度序列数据中快速获取mRNA序列的通用方法。常见需求是从通过电生理学、免疫细胞化学和药理学等方法研究的组织中鉴定特定的mRNA分子。要广泛应用,任何方法都必须相对易于实验室操作人员使用,他们无需具备广泛的统计学或生物信息学知识,且使用的硬件应易于获取。

研究结果

开发出一种方法,可通过两个相连阶段从头组装单个mRNA序列:序列发现和序列完成。两个阶段均依赖计算机辅助、图形用户界面(GUI)引导的用户与数据交互,但一旦发现完成,后续过程相对高效。该方法通过在一系列步骤中反复遍历完整的原始数据来延伸已发现的序列,因此被称为“转录组步移”。转录组分析所需的所有操作都整合在一个程序中,该程序具有相对简单的用户界面,可在标准台式机或笔记本电脑上运行,并在可用时利用多核处理器。完整的mRNA序列鉴定通常耗时不到24小时。此方法已在两种目前缺乏任何重要基因组或转录组数据的动物物种中鉴定出先前未知的mRNA序列。

结论

随着深度测序数据越来越广泛可得,在生物或医学实验室中获取有用序列信息的可及方法将变得愈发重要。本文所述方法不依赖生物信息学算法的详细知识,允许具有分子生物学基础知识和标准实验室计算设备,但软件或生物信息学经验有限的用户从深度测序数据中提取完整基因序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e147/3538525/e27ea28d5c13/1756-0500-5-673-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验