MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, The Netherlands.
Med Eng Phys. 2013 Apr;35(4):549-54. doi: 10.1016/j.medengphy.2012.11.003. Epub 2012 Dec 5.
During minimally invasive surgical procedures (e.g., needle insertion during interventional radiological procedures), needle-tissue interactions and physiological processes cause tissue deformation. Target displacement is caused by soft-tissue deformation, which results in misplacement of the surgical tool (needle). This study presents a technique to predict target displacement in three-dimensions (3D) by combining soft-tissue elasticity estimation using an ultrasound-based acoustic radiation force impulse (ARFI) technique and finite element (FE) models. Three different phantoms with targets are manufactured, and subjected to varying loading and boundary conditions. Ultrasound images are acquired using a 3D probe during loading and unloading of each phantom, and subsequently target displacement is calculated. 3D FE models of the phantoms are developed, and they are used to predict target displacement. The maximum absolute error in target displacement between the experiments and FE analyses is found to be 1.39mm. This error is less than the smallest tumor diameter (2.0-3.0mm) which can be detected in breast tissue. This study shows that the combination of soft-tissue elasticity estimation using the ARFI technique and 3D FE models can accurately predict target displacement, and could be used to develop patient-specific plans for surgical interventions.
在微创手术程序(例如介入放射学程序中的针插入)期间,针与组织的相互作用和生理过程会导致组织变形。目标位移是由软组织变形引起的,这会导致手术工具(针)的错位。本研究提出了一种通过结合基于超声的声辐射力脉冲 (ARFI) 技术和有限元 (FE) 模型来预测三维 (3D) 目标位移的技术。制造了三个具有目标的不同的体模,并对其进行了不同的加载和边界条件的测试。在每个体模的加载和卸载过程中使用 3D 探头获取超声图像,并随后计算目标位移。开发了体模的 3D FE 模型,并用于预测目标位移。实验和 FE 分析之间的目标位移的最大绝对误差被发现为 1.39mm。这个误差小于在乳腺组织中可以检测到的最小肿瘤直径(2.0-3.0mm)。本研究表明,使用 ARFI 技术和 3D FE 模型进行软组织弹性估计的组合可以准确预测目标位移,并可用于为手术干预制定特定于患者的计划。