Suppr超能文献

利用 55MHz 超声混合成像技术对小鼠进行高分辨率血管组织特征分析。

High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.

机构信息

Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States.

出版信息

Ultrasonics. 2013 Mar;53(3):727-38. doi: 10.1016/j.ultras.2012.10.017. Epub 2012 Nov 16.

Abstract

Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques.

摘要

超声和双功能超声特别常用于诊断心血管疾病 (CVD),这是全球发病率和死亡率的主要原因。然而,这些技术可能无法描述由于 CVD 引起的血管组织成分变化。这项工作描述了一种基于超声的混合成像技术,可用于血管组织特征描述和动脉粥样硬化的诊断。采集并处理了超声射频 (RF) 数据,以时间、频率和小波域提取六个参数,包括时间积分反向散射 (T(IB))、时间方差 (T(var))、时间熵 (T(E))、频率积分反向散射 (F(IB))、小波均方根值 (W(rms)) 和小波积分反向散射 (W(IB))。每个参数都用于重建与形态 B 扫描配准的图像。使用三种小鼠模型(包括对照 (C57BL/6)、载脂蛋白 E 敲除 (APOE-KO) 和 APOE/A(1) 腺苷受体双敲除 (DKO) 小鼠),将组合的混合图像集用于体外和体内的血管组织特征描述。该技术使用高频超声进行了测试,包括单元件(中心频率=55 MHz)和商用阵列(中心频率=40 MHz)系统,分别提供 24 μm 和 40 μm 的卓越空间分辨率。APOE-KO 小鼠中的动脉粥样硬化血管病变显示出最高值(对比度)-10.11±1.92 dB、-12.13±2.13 dB、-7.54±1.45 dB、-5.10±1.06 dB、-5.25±0.94 dB 和-10.23±2.12 dB,分别在 T(IB)、T(var)、T(E)、F(IB)、W(rms)、W(IB) 混合图像中(n=10,p<0.05)。正常血管组织的对照段显示出最低值-20.20±2.71 dB、-22.54±4.54 dB、-14.94±2.05 dB、-9.64±1.34 dB、-10.20±1.27 dB 和-19.36±3.24 dB,在相同的混合图像中(n=6,p<0.05)。组织学和光学图像的结果与超声发现之间的最大误差为 3.6%,具有良好的一致性。这项研究证明了高分辨率混合成像技术诊断动脉粥样硬化和特征描述斑块成分的可行性在小鼠中。将来,它可以很容易地在商业超声系统上实现,并最终转化为临床,作为动脉粥样硬化的筛查工具和易损斑块的评估。

相似文献

1
High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.
Ultrasonics. 2013 Mar;53(3):727-38. doi: 10.1016/j.ultras.2012.10.017. Epub 2012 Nov 16.
5
Non-invasive real-time imaging of atherosclerosis in mice using ultrasound biomicroscopy.
Atherosclerosis. 2007 Feb;190(2):313-20. doi: 10.1016/j.atherosclerosis.2006.03.035. Epub 2006 May 4.
6
Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent.
Circ Cardiovasc Imaging. 2013 Mar 1;6(2):285-94. doi: 10.1161/CIRCIMAGING.112.000119. Epub 2013 Jan 24.
8
Contrast-enhanced ultrasound imaging detects intraplaque neovascularization in an experimental model of atherosclerosis.
JACC Cardiovasc Imaging. 2010 Dec;3(12):1256-64. doi: 10.1016/j.jcmg.2010.09.017.
9
Visualization of Monocytic Cells in Regressing Atherosclerotic Plaques by Intravital 2-Photon and Positron Emission Tomography-Based Imaging-Brief Report.
Arterioscler Thromb Vasc Biol. 2018 May;38(5):1030-1036. doi: 10.1161/ATVBAHA.117.310517. Epub 2018 Mar 22.
10
Subharmonic contrast intravascular ultrasound for vasa vasorum imaging.
Ultrasound Med Biol. 2007 Dec;33(12):1859-72. doi: 10.1016/j.ultrasmedbio.2007.05.023. Epub 2007 Aug 2.

引用本文的文献

1
Mouse Cardiovascular Imaging.
Curr Protoc. 2024 Sep;4(9):e1116. doi: 10.1002/cpz1.1116.
2
High-definition intravascular ultrasound: current clinical uses.
Int J Cardiovasc Imaging. 2022 Jun;38(6):1213-1220. doi: 10.1007/s10554-022-02526-x. Epub 2022 Apr 19.
3
Quantifying Vascular Changes Surrounding Bone Regeneration in a Porcine Mandibular Defect Using Computed Tomography.
Tissue Eng Part C Methods. 2019 Dec;25(12):721-731. doi: 10.1089/ten.tec.2019.0205.
4
Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury.
PLoS One. 2015 Apr 8;10(4):e0122665. doi: 10.1371/journal.pone.0122665. eCollection 2015.
5
Non-invasive assessment of cardiac function in a mouse model of renovascular hypertension.
Hypertens Res. 2013 Sep;36(9):770-5. doi: 10.1038/hr.2013.43. Epub 2013 May 16.

本文引用的文献

1
Vascular ultrasound for atherosclerosis imaging.
Interface Focus. 2011 Aug 6;1(4):565-75. doi: 10.1098/rsfs.2011.0024. Epub 2011 Jun 1.
2
Atherosclerotic lesions in mouse and man: is it the same disease?
Curr Opin Lipidol. 2010 Oct;21(5):434-40. doi: 10.1097/MOL.0b013e32833ded6a.
3
A real-time integrated backscatter measurement system for quantitative cardiac tissue characterization.
IEEE Trans Ultrason Ferroelectr Freq Control. 1986;33(1):27-32. doi: 10.1109/t-uffc.1986.26793.
4
US backscatter and attenuation 30 to 50 MHz and MR T2 at 3 Tesla for differentiation of atherosclerotic artery constituents in vitro.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(6):1517-25. doi: 10.1109/58.738291.
5
Synthetic aperture techniques with a virtual source element.
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(1):196-207. doi: 10.1109/58.646925.
6
Development of integrated backscatter intravascular ultrasound for tissue characterization of coronary plaques.
Ultrasound Med Biol. 2008 Apr;34(4):655-63. doi: 10.1016/j.ultrasmedbio.2007.09.015. Epub 2008 Feb 20.
7
Gender as a regulator of atherosclerosis in murine models.
Curr Drug Targets. 2007 Nov;8(11):1172-80. doi: 10.2174/138945007782403874.
8
In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45-75 MHz).
Ultrasound Med Biol. 2008 Jan;34(1):31-9. doi: 10.1016/j.ultrasmedbio.2007.07.002. Epub 2007 Sep 7.
9
A high-frame rate high-frequency ultrasonic system for cardiac imaging in mice.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Aug;54(8):1648-55. doi: 10.1109/tuffc.2007.436.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验