Suppr超能文献

基于药物筛选结果的支持向量机用于肝细胞癌的计算机药物筛选和潜在靶标鉴定。

In-silico drug screening and potential target identification for hepatocellular carcinoma using Support Vector Machines based on drug screening result.

机构信息

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Gene. 2013 Apr 10;518(1):201-8. doi: 10.1016/j.gene.2012.11.030. Epub 2012 Dec 6.

Abstract

Hepatocellular carcinoma (HCC) is a severe liver malignancy with few drug treatment options. In finding an effective treatment for HCC, screening drugs that are already FDA-approved will fast track the clinical trial and drug approval process. Connectivity Map (CMap), a large repository of chemical-induced gene expression profiles, provides the opportunity to analyze drug properties on the basis of gene expression. Support Vector Machines (SVM) were utilized to classify the effectiveness of drugs against HCC using gene expression profiles in CMap. The results of this classification will help us (1) identify genes that are chemically sensitive, and (2) predict the effectiveness of remaining chemicals in CMap in the treatment of HCC and provide a prioritized list of possible HCC drugs for biological verification. Four HCC cell lines were treated with 146 distinct chemicals, and cell viability was examined. SVM successfully classified the effectiveness of the chemicals with an average Area Under ROC Curve (AUROC) of 0.9. Using reported HCC patient samples, we identified chemically sensitive genes that may be possible HCC therapeutic targets, including MT1E, MYC, and GADD45B. Using SVM, several known HCC inhibitors, such as geldanamycin, alvespimycin (HSP90 inhibitors), and doxorubicin (chemotherapy drug), were predicted. Seven out of the 23 predicted drugs were cardiac glycosides, suggesting a link between this drug category and HCC inhibition. The study demonstrates a strategy of in silico drug screening with SVM using a large repository of microarrays based on initial in vitro drug screening. Verifying these results biologically would help develop a more accurate chemical sensitivity model.

摘要

肝细胞癌 (HCC) 是一种严重的肝脏恶性肿瘤,治疗选择有限。在寻找治疗 HCC 的有效方法时,筛选已经获得美国食品和药物管理局 (FDA) 批准的药物将加速临床试验和药物审批过程。Connectivity Map (CMap) 是一个大型化学诱导基因表达谱数据库,为基于基因表达分析药物特性提供了机会。支持向量机 (SVM) 用于使用 CMap 中的基因表达谱对 HCC 药物的有效性进行分类。该分类的结果将帮助我们:(1) 识别对化学物质敏感的基因,以及 (2) 预测 CMap 中剩余化学物质在治疗 HCC 中的有效性,并提供可能的 HCC 药物的优先列表,供生物学验证。用 146 种不同的化学物质处理四种 HCC 细胞系,并检查细胞活力。SVM 成功地对化学物质的有效性进行了分类,平均 AUC 为 0.9。使用报告的 HCC 患者样本,我们确定了可能的 HCC 治疗靶点的化学敏感基因,包括 MT1E、MYC 和 GADD45B。使用 SVM,预测了几种已知的 HCC 抑制剂,如 geldanamycin、alvespimycin (HSP90 抑制剂) 和 doxorubicin (化疗药物)。在预测的 23 种药物中,有 7 种是强心苷,表明这一药物类别与 HCC 抑制之间存在联系。该研究展示了一种使用 SVM 对大型基于微阵列的数据库进行计算机药物筛选的策略,该策略基于初始的体外药物筛选。对这些结果进行生物学验证将有助于开发更准确的化学敏感性模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验