Suppr超能文献

3D PET 图像重建,包括运动校正和直接到 MR 或立体定向空间图谱的配准。

3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas.

机构信息

Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada.

出版信息

Phys Med Biol. 2013 Jan 7;58(1):105-26. doi: 10.1088/0031-9155/58/1/105. Epub 2012 Dec 6.

Abstract

This work explores the feasibility and impact of including both the motion correction and the image registration transformation parameters from positron emission tomography (PET) image space to magnetic resonance (MR), or stereotaxic, image space within the system matrix of PET image reconstruction. This approach is motivated by the fields of neuroscience and psychiatry, where PET is used to investigate differences in activation patterns between different groups of participants, requiring all images to be registered to a common spatial atlas. Currently, image registration is performed after image reconstruction which introduces interpolation effects into the final image. Furthermore, motion correction (also requiring registration) introduces a further level of interpolation, and the overall result of these operations can lead to resolution degradation and possibly artifacts. It is important to note that performing such operations on a post-reconstruction basis means, strictly speaking, that the final images are not ones which maximize the desired objective function (e.g. maximum likelihood (ML), or maximum a posteriori reconstruction (MAP)). To correctly seek parameter estimates in the desired spatial atlas which are in accordance with the chosen reconstruction objective function, it is necessary to include the transformation parameters for both motion correction and registration within the system modeling stage of image reconstruction. Such an approach not only respects the statistically chosen objective function (e.g. ML or MAP), but furthermore should serve to reduce the interpolation effects. To evaluate the proposed method, this work investigates registration (including motion correction) using 2D and 3D simulations based on the high resolution research tomograph (HRRT) PET scanner geometry, with and without resolution modeling, using the ML expectation maximization (MLEM) reconstruction algorithm. The quality of reconstruction was assessed using bias-variance and root mean squared error analyses, comparing the proposed method to conventional post-reconstruction registration methods. An overall reduction in bias (for a cold region: from 41% down to 31% (2D) and 97% down to 65% (3D), and for a hot region: from 11% down to 8% (2D) and from 16% down to 14% (3D)) and in root mean squared error analyses (for a cold region: from 43% to 37% (2D) and from 97% to 65% (3D), and for a hot region: from 11% to 9% (2D) and from 16% down to 14% (3D)) in reconstructed regional mean activities (full regions of interest; all with statistical significance: p < 5 × 10(-10)) is found when including the motion correction and registration in the system matrix of the MLEM reconstruction, with resolution modeling. However, this improvement in performance comes with an extra computational cost of about 40 min. In this context, this work constitutes an important step toward the goal of estimating parameters of interest directly from the raw Poisson-distributed PET data, and hence toward the complete elimination of post-processing steps.

摘要

这项工作探讨了将正电子发射断层扫描(PET)图像空间中的运动校正和图像配准变换参数包含在 PET 图像重建的系统矩阵中的可行性和影响。这种方法的动机来自神经科学和精神病学领域,在这些领域中,PET 用于研究不同组参与者之间的激活模式差异,需要将所有图像注册到公共空间图谱。目前,图像配准是在图像重建之后进行的,这会在最终图像中引入插值效应。此外,运动校正(也需要配准)引入了进一步的插值水平,这些操作的总体结果可能导致分辨率下降和可能的伪影。重要的是要注意,在重建后进行此类操作意味着,严格来说,最终图像不是最大化所需目标函数(例如最大似然(ML)或最大后验重建(MAP))的图像。为了正确地在所选重建目标函数的期望空间图谱中寻找参数估计值,有必要在图像重建的系统建模阶段包含运动校正和配准的变换参数。这种方法不仅尊重统计上选择的目标函数(例如 ML 或 MAP),而且应该有助于减少插值效应。为了评估所提出的方法,这项工作基于高分辨率研究断层扫描(HRRT)PET 扫描仪几何结构,使用和不使用分辨率建模,使用 ML 期望最大化(MLEM)重建算法,通过 2D 和 3D 模拟来研究注册(包括运动校正)。使用偏差-方差和均方根误差分析来评估重建质量,将所提出的方法与传统的后重建注册方法进行比较。当在 MLEM 重建的系统矩阵中包含运动校正和配准时,在重建的区域平均活动(完整感兴趣区域;所有都具有统计学意义:p < 5×10(-10))中发现整体偏差降低(对于冷区域:从 41%降至 31%(2D)和从 97%降至 65%(3D),对于热区域:从 11%降至 8%(2D)和从 16%降至 14%(3D))和均方根误差分析(对于冷区域:从 43%降至 37%(2D)和从 97%降至 65%(3D),对于热区域:从 11%降至 9%(2D)和从 16%降至 14%(3D))。然而,这种性能的提高伴随着大约 40 分钟的额外计算成本。在这种情况下,这项工作是朝着直接从原始泊松分布 PET 数据估计感兴趣参数的目标迈出的重要一步,因此朝着完全消除后处理步骤迈出了重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验