Suppr超能文献

正则化在运动补偿 PET 图像重建中的影响:一项现实的 4D 数值模拟研究。

The effect of regularization in motion compensated PET image reconstruction: a realistic numerical 4D simulation study.

机构信息

Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.

出版信息

Phys Med Biol. 2013 Mar 21;58(6):1759-73. doi: 10.1088/0031-9155/58/6/1759. Epub 2013 Feb 26.

Abstract

Following continuous improvement in PET spatial resolution, respiratory motion correction has become an important task. Two of the most common approaches that utilize all detected PET events to motion-correct PET data are the reconstruct-transform-average method (RTA) and motion-compensated image reconstruction (MCIR). In RTA, separate images are reconstructed for each respiratory frame, subsequently transformed to one reference frame and finally averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are reconstructed by including motion information in the system matrix so that a motion-corrected image is reconstructed directly. Previous theoretical analyses have explained why MCIR is expected to outperform RTA. It has been suggested that MCIR creates less noise than RTA because the images for each separate respiratory frame will be severely affected by noise. However, recent investigations have shown that in the unregularized case RTA images can have fewer noise artefacts, while MCIR images are more quantitatively accurate but have the common salt-and-pepper noise. In this paper, we perform a realistic numerical 4D simulation study to compare the advantages gained by including regularization within reconstruction for RTA and MCIR, in particular using the median-root-prior incorporated in the ordered subsets maximum a posteriori one-step-late algorithm. In this investigation we have demonstrated that MCIR with proper regularization parameters reconstructs lesions with less bias and root mean square error and similar CNR and standard deviation to regularized RTA. This finding is reproducible for a variety of noise levels (25, 50, 100 million counts), lesion sizes (8 mm, 14 mm diameter) and iterations. Nevertheless, regularized RTA can also be a practical solution for motion compensation as a proper level of regularization reduces both bias and mean square error.

摘要

随着 PET 空间分辨率的不断提高,呼吸运动校正已成为一项重要任务。利用所有检测到的 PET 事件来校正 PET 数据的两种最常见的方法是重建-变换-平均方法(RTA)和运动补偿图像重建(MCIR)。在 RTA 中,为每个呼吸帧重建单独的图像,随后将其转换到一个参考帧,最后进行平均以产生校正运动的图像。在 MCIR 中,通过在系统矩阵中包含运动信息来重建来自所有帧的投影数据,从而直接重建校正运动的图像。以前的理论分析解释了为什么 MCIR 有望优于 RTA。有人认为,MCIR 产生的噪声比 RTA 少,因为每个单独的呼吸帧的图像将受到噪声的严重影响。然而,最近的研究表明,在非正则化情况下,RTA 图像的噪声伪影可能更少,而 MCIR 图像的定量准确性更高,但具有常见的椒盐噪声。在本文中,我们进行了一项现实的 4D 数值模拟研究,以比较在重建中包含正则化对 RTA 和 MCIR 的优势,特别是使用中值根先验的有序子集最大后验一步滞后算法。在这项研究中,我们证明了具有适当正则化参数的 MCIR 可以以更少的偏差和均方根误差重建病变,并且与正则化的 RTA 相比,具有相似的 CNR 和标准差。这一发现对于多种噪声水平(25、50、1000 万计数)、病变大小(8mm、14mm 直径)和迭代次数都是可重复的。然而,正则化的 RTA 也可以作为一种实用的运动补偿解决方案,因为适当的正则化水平可以降低偏差和均方根误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验