Department of Intensive Care Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
Nephrol Dial Transplant. 2013 Feb;28(2):345-51. doi: 10.1093/ndt/gfs518. Epub 2012 Dec 4.
Cardiac surgery-related acute kidney injury (CS-AKI) results in increased morbidity and mortality. Different models have been developed to identify patients at risk of CS-AKI. While models that predict dialysis and CS-AKI defined by the RIFLE criteria are available, their predictive power and clinical applicability have not been compared head to head.
Of 1388 consecutive adult cardiac surgery patients operated with cardiopulmonary bypass, risk scores of eight prediction models were calculated. Four models were only applicable to a subgroup of patients. The area under the receiver operating curve (AUROC) was calculated for all levels of CS-AKI and for need for dialysis (AKI-D) for each risk model and compared for the models applicable to the largest subgroup (n = 1243).
The incidence of AKI-D was 1.9% and for CS-AKI 9.3%. The models of Rahmanian, Palomba and Aronson could not be used for preoperative risk assessment as postoperative data are necessary. The three best AUROCs for AKI-D were of the model of Thakar: 0.93 [95% confidence interval (CI) 0.91-0.94], Fortescue: 0.88 (95% CI 0.87-0.90) and Wijeysundera: 0.87 (95% CI 0.85-0.89). The three best AUROCs for CS-AKI-risk were 0.75 (95% CI 0.73-0.78), 0.74 (95% CI 0.71-0.76) and 0.70 (95% CI 0.73-0.78), for Thakar, Mehta and both Fortescue and Wijeysundera, respectively. The model of Thakar performed significantly better compared with the models of Mehta, Rahmanian, Fortescue and Wijeysundera (all P-values <0.01) at different levels of severity of CS-AKI.
The Thakar model offers the best discriminative value to predict CS-AKI and is applicable in a preoperative setting and for all patients undergoing cardiac surgery.
心脏手术相关的急性肾损伤(CS-AKI)会增加发病率和死亡率。已经开发出不同的模型来识别 CS-AKI 风险患者。虽然有预测透析和 RIFLE 标准定义的 CS-AKI 的模型,但它们的预测能力和临床适用性尚未进行直接比较。
对 1388 例连续行体外循环心脏手术的成年患者,计算了 8 个预测模型的风险评分。其中 4 个模型仅适用于亚组患者。计算了每个风险模型在所有 CS-AKI 水平和透析需要(AKI-D)的受试者工作特征曲线(AUROC),并比较了适用于最大亚组(n = 1243)的模型。
AKI-D 的发生率为 1.9%,CS-AKI 的发生率为 9.3%。Rahmanian、Palomba 和 Aronson 模型由于需要术后数据,因此无法用于术前风险评估。AKI-D 的三个最佳 AUROCs 是 Thakar 模型的 0.93 [95%置信区间(CI)0.91-0.94]、Fortescue 模型的 0.88(95% CI 0.87-0.90)和 Wijeysundera 模型的 0.87(95% CI 0.85-0.89)。CS-AKI 风险的三个最佳 AUROCs 分别是 0.75(95% CI 0.73-0.78)、0.74(95% CI 0.71-0.76)和 0.70(95% CI 0.73-0.78),适用于 Thakar、Mehta 和 Fortescue 与 Wijeysundera 模型。与 Mehta、Rahmanian、Fortescue 和 Wijeysundera 模型相比(所有 P 值均<0.01),Thakar 模型在不同严重程度的 CS-AKI 水平下表现出更好的区分能力。
Thakar 模型提供了预测 CS-AKI 的最佳判别值,适用于术前设置和所有接受心脏手术的患者。