Heo Suncheol, Kang Eun-Ae, Yu Jae Yong, Kim Hae Reong, Lee Suehyun, Kim Kwangsoo, Hwangbo Yul, Park Rae Woong, Shin Hyunah, Ryu Kyeongmin, Kim Chungsoo, Jung Hyojung, Chegal Yebin, Lee Jae-Hyun, Park Yu Rang
Department of Biomedical System Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.
Medical Informatics Collaborative Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea.
JMIR Med Inform. 2024 Jul 5;12:e47693. doi: 10.2196/47693.
Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network (DRN)-based time series data are rare.
In this study, we aimed to detect the early occurrence of AKI by applying an interpretable long short-term memory (LSTM)-based model to hospital electronic health record (EHR)-based time series data in patients who took nephrotoxic drugs using a DRN.
We conducted a multi-institutional retrospective cohort study of data from 6 hospitals using a DRN. For each institution, a patient-based data set was constructed using 5 drugs for AKI, and an interpretable multivariable LSTM (IMV-LSTM) model was used for training. This study used propensity score matching to mitigate differences in demographics and clinical characteristics. Additionally, the temporal attention values of the AKI prediction model's contribution variables were demonstrated for each institution and drug, with differences in highly important feature distributions between the case and control data confirmed using 1-way ANOVA.
This study analyzed 8643 and 31,012 patients with and without AKI, respectively, across 6 hospitals. When analyzing the distribution of AKI onset, vancomycin showed an earlier onset (median 12, IQR 5-25 days), and acyclovir was the slowest compared to the other drugs (median 23, IQR 10-41 days). Our temporal deep learning model for AKI prediction performed well for most drugs. Acyclovir had the highest average area under the receiver operating characteristic curve score per drug (0.94), followed by acetaminophen (0.93), vancomycin (0.92), naproxen (0.90), and celecoxib (0.89). Based on the temporal attention values of the variables in the AKI prediction model, verified lymphocytes and calcvancomycin ium had the highest attention, whereas lymphocytes, albumin, and hemoglobin tended to decrease over time, and urine pH and prothrombin time tended to increase.
Early surveillance of AKI outbreaks can be achieved by applying an IMV-LSTM based on time series data through an EHR-based DRN. This approach can help identify risk factors and enable early detection of adverse drug reactions when prescribing drugs that cause renal toxicity before AKI occurs.
急性肾损伤(AKI)是临床病情恶化和肾毒性的一个标志。虽然有许多研究提供了用于早期检测AKI的预测模型,但利用基于分布式研究网络(DRN)的时间序列数据预测AKI发生情况的研究却很少见。
在本研究中,我们旨在通过将基于可解释长短期记忆(LSTM)的模型应用于使用DRN的服用肾毒性药物患者的医院电子健康记录(EHR)时间序列数据,来检测AKI的早期发生情况。
我们使用DRN对来自6家医院的数据进行了一项多机构回顾性队列研究。对于每个机构,使用5种导致AKI的药物构建了一个基于患者的数据集,并使用一个可解释的多变量LSTM(IMV-LSTM)模型进行训练。本研究使用倾向得分匹配来减轻人口统计学和临床特征方面的差异。此外,展示了AKI预测模型贡献变量的时间注意力值,针对每个机构和药物进行分析,并使用单因素方差分析确认病例组和对照组数据之间高度重要特征分布的差异。
本研究分别分析了6家医院中8643例和31012例发生和未发生AKI的患者。在分析AKI发病分布时,万古霉素的发病时间较早(中位数为12天,四分位间距为5 - 25天),与其他药物相比,阿昔洛韦的发病时间最慢(中位数为23天,四分位间距为10 - 41天)。我们用于AKI预测的时间深度学习模型对大多数药物表现良好。按药物计算,阿昔洛韦的受试者工作特征曲线下平均面积得分最高(0.94),其次是对乙酰氨基酚(0.93)、万古霉素(0.92)、萘普生(0.90)和塞来昔布(0.89)。根据AKI预测模型中变量的时间注意力值,经证实淋巴细胞和万古霉素的注意力最高,而淋巴细胞、白蛋白和血红蛋白随时间趋于下降,尿液pH值和凝血酶原时间趋于上升。
通过基于EHR的DRN,将基于时间序列数据的IMV-LSTM应用于AKI暴发的早期监测是可行的。这种方法有助于识别风险因素,并在开具导致肾毒性的药物时,在AKI发生前早期检测到药物不良反应。