Departamento de Bioquímica, Biologa Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain.
Hum Mol Genet. 2013 Mar 15;22(6):1132-9. doi: 10.1093/hmg/dds517. Epub 2012 Dec 7.
Some ribosomal antibiotics used in clinical practice to fight pathogenic bacteria can provoke serious adverse drug reactions in patients. Sensitivity to the antibiotics is a multifactorial trait but the genetic variation of sensitive individuals to off-target effects of the drugs might be one of the factors contributing to this condition. Thus, the protein synthesis apparatus of mitochondria is similar to that of bacteria because of its endosymbiotic origin and, therefore, mitochondrial ribosomes are frequently unintended off-targets of these antibiotics. Because of the limitations of epidemiologic studies of pharmacogenomics, we constructed 25 transmitochondrial cell lines using platelets from individuals belonging to high-frequency European mitochondrial DNA (mtDNA) haplogroups and grew them in the absence or presence of commonly used ribosomal antibiotics. Next, we analyzed the mitochondrial synthesis of proteins and the mitochondrial oxygen consumption to ascertain whether some side effects of ribosomal drugs are due to their interaction with particular mtDNA haplogroup-defining polymorphisms. The amount of mitochondrial translation products, the p.MT-CO1/succinate dehydrogenase subunit A ratio and the ratio of respiratory complex IV quantity to citrate synthase (CS)-specific activity were significantly lower, after the treatment with linezolid, in cybrids harboring the highly frequent m.3010A allele. These results suggest that mitochondrial antibiograms should be implemented for at least the most frequent mitochondrial ribosomal RNA (rRNA) polymorphisms and combinations of polymorphisms and the most frequently used ribosomal antibiotics. In this way, we would obtain individualized barcodes for antibiotic therapy, avoid the side effects of the antibiotics and enable appropriate personalized medicine.
一些在临床上用于对抗病原菌的核糖体抗生素会在患者中引发严重的药物不良反应。对这些抗生素的敏感性是一个多因素特征,但药物的脱靶效应对敏感个体的遗传变异可能是导致这种情况的因素之一。因此,由于线粒体的内共生起源,其核糖体蛋白合成装置与细菌的相似,因此线粒体核糖体经常成为这些抗生素的非预期脱靶目标。由于药物基因组学的流行病学研究存在局限性,我们使用属于高频欧洲线粒体 DNA (mtDNA) 单倍群个体的血小板构建了 25 个转线粒体细胞系,并在存在或不存在常用核糖体抗生素的情况下培养它们。接下来,我们分析了线粒体蛋白质合成和线粒体耗氧量,以确定核糖体药物的一些副作用是否是由于它们与特定的 mtDNA 单倍群定义多态性相互作用所致。在用利奈唑胺治疗后,携带高度频繁的 m.3010A 等位基因的细胞系中,线粒体翻译产物的量、p.MT-CO1/琥珀酸脱氢酶亚单位 A 比值以及呼吸复合物 IV 量与柠檬酸合酶 (CS)-特异性活性的比值显著降低。这些结果表明,线粒体抗生素图谱至少应该针对最常见的线粒体核糖体 RNA (rRNA) 多态性及其多态性组合以及最常用的核糖体抗生素进行实施。通过这种方式,我们将获得抗生素治疗的个体化条码,避免抗生素的副作用,并实现适当的个体化医学。