Suppr超能文献

高价金属离子掺杂在 Bi3+ 或 V5+ 位的 BiVO4 的形成能和光电化学性能。

Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions.

机构信息

Ecomaterials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, People's Republic of China.

出版信息

Phys Chem Chem Phys. 2013 Jan 21;15(3):1006-13. doi: 10.1039/c2cp43408c.

Abstract

Photoelectrochemical water splitting is an attractive method to produce H(2) fuel from solar energy and water. Ion doping with higher valence states was used widely to enhance the photocurrent of an n-type oxide semiconductor. In this study, the different doping sites and the photoelectrochemical properties of Mo(6+), W(6+) and Sn(4+)-doped BiVO(4) were studied systematically. The results suggested that Mo(6+) or W(6+)-doped BiVO(4) had a much higher photocurrent while the photocurrent of Sn(4+)-doped BiVO(4) did not change obviously. Raman and XPS were used to identify the doping sites in the BiVO(4) crystal lattice. It was found that Mo or W substituted V sites but Sn did not substitute Bi sites. Results of theoretical calculation indicated that a higher formation energy and lower solubility of impurity ions led to serious SnO(2) segregation on the surface of the Sn(4+)-doped BiVO(4) thin film, which was the main reason for the poor performance of Sn-doped BiVO(4). The higher formation energy of Sn(4+) came from the large mismatch of ion radius and different outer shell electron distribution. These results can offer guidance in choosing suitable doping ions for other semiconductor photoelectrodes.

摘要

光电化学水分解是一种从太阳能和水中生产 H(2)燃料的有吸引力的方法。用较高价态的离子掺杂来增强 n 型氧化物半导体的光电流已经得到了广泛的应用。在这项研究中,系统地研究了 Mo(6+)、W(6+)和 Sn(4+)-掺杂 BiVO(4)的不同掺杂位置和光电化学性质。结果表明,Mo(6+)或 W(6+)-掺杂的 BiVO(4)具有更高的光电流,而 Sn(4+)-掺杂的 BiVO(4)的光电流没有明显变化。拉曼和 XPS 用于确定 BiVO(4)晶格中的掺杂位置。结果发现 Mo 或 W 取代了 V 位,但 Sn 没有取代 Bi 位。理论计算结果表明,较高的形成能和较低的杂质离子溶解度导致 Sn(4+)-掺杂 BiVO(4)薄膜表面严重的 SnO(2)分凝,这是 Sn 掺杂 BiVO(4)性能较差的主要原因。Sn(4+)的形成能较高是由于离子半径和外层电子分布的巨大不匹配。这些结果可以为选择其他半导体光电阳极的合适掺杂离子提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验