Suppr超能文献

Co在BiVO中替代Bi及其在可见光发光二极管照射下增强的光催化活性。

Co substituted for Bi in BiVO and its enhanced photocatalytic activity under visible LED light irradiation.

作者信息

Nguyen Trinh Duy, Bui Quynh Thi Phuong, Le Tien Bao, Altahtamouni T M, Vu Khanh Bao, Vo Dai-Viet N, Le Nhan Thi Hong, Luu Tuan Duy, Hong Seong Soo, Lim Kwon Taek

机构信息

Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University Ho Chi Minh City Vietnam

Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry 140 LeTrong Tan, Tan Phu District Ho Chi Minh City Vietnam.

出版信息

RSC Adv. 2019 Jul 30;9(41):23526-23534. doi: 10.1039/c9ra04188e. eCollection 2019 Jul 29.

Abstract

We investigated the fabrication of Co-doped BiVO (Bi Co VO , 0.05 < < 0.5) by the substitution of Co ions for Bi sites in BiVO. The X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) results indicated that the substitution of Co ions for Bi sites in BiVO was successful, although a change in the crystal phase of BiVO did not occur. UV-vis DRS and PL results suggested that the Co-incorporation could slightly improve the visible light absorption of BiVO and induce the separation of photoinduced electron-hole pairs; therefore, a significant enhancement of photocatalytic performance was achieved. The BiCoVO sample showed superior photocatalytic activity in comparison with other samples, achieving 96.78% methylene blue (MB) removal within 180 min. In addition, the proposed mechanism of improved photocatalytic activities and the stability of the catalyst were also investigated.

摘要

我们通过用钴离子取代BiVO₄中的铋位点来研究共掺杂BiVO₄(Bi₁₋ₓCoₓVO₄,0.05 < x < 0.5)的制备。X射线衍射(XRD)、拉曼光谱和X射线光电子能谱(XPS)结果表明,尽管BiVO₄的晶相没有发生变化,但用钴离子取代BiVO₄中的铋位点是成功的。紫外可见漫反射光谱(UV-vis DRS)和光致发光(PL)结果表明,掺入钴可以略微提高BiVO₄对可见光的吸收,并诱导光生电子-空穴对的分离;因此,实现了光催化性能的显著增强。与其他样品相比,BiCoVO样品表现出优异的光催化活性,在180分钟内实现了96.78%的亚甲基蓝(MB)去除率。此外,还研究了所提出的光催化活性提高的机制和催化剂的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验