Suppr超能文献

三重突变抗体 scFv2F3 具有高 GPx 活性:来自 MD、对接、MDFE 和 MM-PBSA 模拟的见解。

Triple mutated antibody scFv2F3 with high GPx activity: insights from MD, docking, MDFE, and MM-PBSA simulation.

机构信息

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, People's Republic of China.

出版信息

Amino Acids. 2013 Mar;44(3):1009-19. doi: 10.1007/s00726-012-1435-3. Epub 2012 Dec 6.

Abstract

By combining computational design and site-directed mutagenesis, we have engineered a new catalytic ability into the antibody scFv2F3 by installing a catalytic triad (Trp(29)-Sec(52)-Gln(72)). The resulting abzyme, Se-scFv2F3, exhibits a high glutathione peroxidase (GPx) activity, approaching the native enzyme activity. Activity assays and a systematic computational study were performed to investigate the effect of successive replacement of residues at positions 29, 52, and 72. The results revealed that an active site Ser(52)/Sec substitution is critical for the GPx activity of Se-scFv2F3. In addition, Phe(29)/Trp-Val(72)/Gln mutations enhance the reaction rate via functional cooperation with Sec(52). Molecular dynamics simulations showed that the designed catalytic triad is very stable and the conformational flexibility caused by Tyr(101) occurs mainly in the loop of complementarity determining region 3. The docking studies illustrated the importance of this loop that favors the conformational shift of Tyr(54), Asn(55), and Gly(56) to stabilize substrate binding. Molecular dynamics free energy and molecular mechanics-Poisson Boltzmann surface area calculations estimated the pK(a) shifts of the catalytic residue and the binding free energies of docked complexes, suggesting that dipole-dipole interactions among Trp(29)-Sec(52)-Gln(72) lead to the change of free energy that promotes the residual catalytic activity and the substrate-binding capacity. The calculated results agree well with the experimental data, which should help to clarify why Se-scFv2F3 exhibits high catalytic efficiency.

摘要

通过组合计算设计和定点突变,我们在抗体 scFv2F3 中构建了一个催化三联体(Trp(29)-Sec(52)-Gln(72)),从而赋予其新的催化能力。所得的酶,Se-scFv2F3,表现出高谷胱甘肽过氧化物酶(GPx)活性,接近天然酶活性。进行了活性测定和系统的计算研究,以研究连续取代位置 29、52 和 72 上的残基的效果。结果表明,活性位点 Ser(52)/Sec 取代对于 Se-scFv2F3 的 GPx 活性至关重要。此外,Phe(29)/Trp-Val(72)/Gln 突变通过与 Sec(52)的功能合作增强了反应速率。分子动力学模拟表明,设计的催化三联体非常稳定,并且 Tyr(101)引起的构象灵活性主要发生在互补决定区 3 的环中。对接研究说明了该环的重要性,它有利于 Tyr(54)、Asn(55)和 Gly(56)构象的转变,从而稳定底物结合。分子动力学自由能和分子力学-泊松-玻尔兹曼表面面积计算估计了催化残基的 pK(a)变化和对接复合物的结合自由能,表明 Trp(29)-Sec(52)-Gln(72)之间的偶极-偶极相互作用导致自由能的变化,从而促进了剩余的催化活性和底物结合能力。计算结果与实验数据吻合良好,这应该有助于阐明为什么 Se-scFv2F3 表现出高催化效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验