Cell Biophysics Laboratory, London Research Institute, Cancer Research United Kingdom, London, United Kingdom.
PLoS One. 2012;7(12):e51150. doi: 10.1371/journal.pone.0051150. Epub 2012 Dec 5.
The functions and morphology of cellular membranes are intimately related and depend not only on their protein content but also on the repertoire of lipids that comprise them. In the absence of in vivo data on lipid asymmetry in endomembranes, it has been argued that motors, scaffolding proteins or integral membrane proteins rather than non-lamellar bilayer lipids such as diacylglycerol (DAG), are responsible for shaping of organelles, local membrane curvature and fusion. The effects of direct alteration of levels of such lipids remain predominantly uninvestigated. Diacylglycerol (DAG) is a well documented second messenger. Here we demonstrate two additional conserved functions of DAG: a structural role in organelle morphology, and a role in localised extreme membrane curvature required for fusion for which proteins alone are insufficient. Acute and inducible DAG depletion results in failure of the nuclear envelope (NE) to reform at mitosis and reorganisation of the ER into multi-lamellar sheets as revealed by correlative light and electron microscopy and 3D reconstructions. Remarkably, depleted cells divide without a complete NE, and unless rescued by 1,2 or 1,3 DAG soon die. Attenuation of DAG levels by enzyme microinjection into echinoderm eggs and embryos also results in alterations of ER morphology and nuclear membrane fusion. Our findings demonstrate that DAG is an in vivo modulator of organelle morphology in mammalian and echinoderm cells, indicating a fundamental role conserved across the deuterostome superphylum.
细胞膜的功能和形态密切相关,不仅取决于其蛋白质含量,还取决于构成它们的脂质种类。在缺乏关于内膜系统中脂质不对称性的体内数据的情况下,有人认为,是马达、支架蛋白或整合膜蛋白,而不是双分子层脂质(如二酰基甘油 (DAG)),负责塑造细胞器、局部膜曲率和融合。直接改变这些脂质水平的影响仍主要未被研究。二酰基甘油 (DAG) 是一种有充分文献记载的第二信使。在这里,我们展示了 DAG 的另外两个保守功能:在细胞器形态中的结构作用,以及在融合过程中所需的局部极端膜曲率中的作用,而蛋白质本身是不够的。急性和诱导性 DAG 耗竭会导致核膜 (NE) 在有丝分裂时无法重新形成,以及内质网 (ER) 重组为多层片,这可以通过共聚焦光镜和电子显微镜以及 3D 重建来揭示。值得注意的是,耗尽的细胞在没有完整 NE 的情况下进行分裂,如果不通过 1,2 或 1,3-DAG 及时挽救,它们很快就会死亡。通过酶微注射到棘皮动物卵和胚胎中降低 DAG 水平也会导致 ER 形态和核膜融合的改变。我们的发现表明,DAG 是哺乳动物和棘皮动物细胞中细胞器形态的体内调节剂,表明其在后生动物超门中具有保守的基本作用。