Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
Environ Microbiol. 2013 May;15(5):1572-9. doi: 10.1111/1462-2920.12042. Epub 2012 Dec 11.
The stoichiometry of prokaryotes (Bacteria and Archaea) can control benthic phosphorus (P) fluxes relative to carbon (C) and nitrogen (N) during organic matter remineralization. This paper presents the first experimental data on benthic microbial stoichiometry. We used X-ray microanalysis to determine C : N : P ratios of individual prokaryotes from C-limited Baltic Sea sediments incubated under oxic or anoxic conditions. At approximately 400:1, C : P ratios of prokaryotes from both oxic and anoxic incubations were higher than the Redfield ratio for marine organic matter (106:1), whereas prokaryotic C : N ratios (6.4:1) were close to the Redfield ratio. We conclude that high microbial C : P ratios contribute to the enhanced remineralization of P from organic matter relative to C and N observed in many low oxygen marine settings.
原核生物(细菌和古菌)的化学计量可以控制有机物质再矿化过程中相对于碳(C)和氮(N)的底栖磷(P)通量。本文介绍了底栖微生物化学计量的第一批实验数据。我们使用 X 射线微分析来确定在有氧或缺氧条件下培养的波罗的海受 C 限制沉积物中单个原核生物的 C:N:P 比值。原核生物的 C:P 比值在有氧和缺氧培养中分别约为 400:1,均高于海洋有机物质的 Redfield 比值(106:1),而原核生物的 C:N 比值(6.4:1)接近 Redfield 比值。我们的结论是,微生物高 C:P 比值有助于增强许多低氧海洋环境中观察到的有机物质相对于 C 和 N 的 P 再矿化。