Suppr超能文献

Fluorescence postlabeling assay of cis-thymidine glycol monophosphate in X-irradiated calf-thymus DNA.

作者信息

Sharma M, Box H C, Kelman D J

机构信息

Dept. of Biophysics, Roswell Park Memorial Institute, Buffalo, NY 14263.

出版信息

Chem Biol Interact. 1990;74(1-2):107-17. doi: 10.1016/0009-2797(90)90062-r.

Abstract

DNA damage was induced by irradiating calf-thymus DNA with a GE Maxitron-250 as an X-ray source. The use of nitrous oxide as a scavenger of solvated electrons in the irradiation process, resulted in essentially a monoreactant system of the biologically important hydroxyl radical. A novel approach combining the enzymatic digestion of the irradiated DNA to nucleoside 5' monophosphates and fluorescence postlabeling was applied to detect a specific modified nucleotide induced by ionizing radiation, namely the 5,6-dihydroxy-5,6-dihydrothymine lesion. This modification, often referred to as the glycol lesion, is polar and is generated mainly as the cis stereoisomers. In order to demonstrate the detection of this lesion in DNA by fluorescence labeling, the lesion was first produced chemically in a DNA model compound d(CGTA). The modified oligomers were isolated intact by HPLC and characterized by NMR as cis stereoisomers of glycol derivatives of d(CGTA). The major isomer of the modified d(CGTA) was enzymatically digested to yield 5' monophosphates. The digest was chromatographed by HPLC to enrich the modified nucleotide. The fraction containing the modified nucleotide was labeled with dansyl chloride. The fluorescent labeled nucleotide was chromatographed by HPLC. The same overall procedure was applied to DNA X-irradiated in aqueous solution. With a conventional fluorescence detector, HPLC analysis of the fluorescence labeled nucleotides detected 1 modified nucleotide/10(6) normal nucleotides from 100 micrograms DNA. The two cis glycol lesions were detected in the irradiated DNA by co-chromatography with fluorescent labeled markers. The initial assay of the modified oligomer demonstrated that the same stereoisomer of cis glycol was induced as a major modified nucleotide by both chemical oxidation and ionizing radiation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验