Suppr超能文献

基于多尺度斑点检测算法的自动乳腺超声图像计算机辅助肿瘤检测。

Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images.

机构信息

Department of Radiology, Seoul National University Hospital, Seoul 110-744, Korea.

出版信息

IEEE Trans Med Imaging. 2013 Jul;32(7):1191-200. doi: 10.1109/TMI.2012.2230403. Epub 2012 Dec 10.

Abstract

Automated whole breast ultrasound (ABUS) is an emerging screening tool for detecting breast abnormalities. In this study, a computer-aided detection (CADe) system based on multi-scale blob detection was developed for analyzing ABUS images. The performance of the proposed CADe system was tested using a database composed of 136 breast lesions (58 benign lesions and 78 malignant lesions) and 37 normal cases. After speckle noise reduction, Hessian analysis with multi-scale blob detection was applied for the detection of tumors. This method detected every tumor, but some nontumors were also detected. The tumor like lihoods for the remaining candidates were estimated using a logistic regression model based on blobness, internal echo, and morphology features. The tumor candidates with tumor likelihoods higher than a specific threshold (0.4) were considered tumors. By using the combination of blobness, internal echo, and morphology features with 10-fold cross-validation, the proposed CAD system showed sensitivities of 100%, 90%, and 70% with false positives per pass of 17.4, 8.8, and 2.7, respectively. Our results suggest that CADe systems based on multi-scale blob detection can be used to detect breast tumors in ABUS images.

摘要

自动全乳房超声(ABUS)是一种新兴的筛查工具,用于检测乳房异常。在这项研究中,开发了一种基于多尺度斑点检测的计算机辅助检测(CADe)系统,用于分析 ABUS 图像。使用由 136 个乳腺病变(58 个良性病变和 78 个恶性病变)和 37 个正常病例组成的数据库测试了所提出的 CADe 系统的性能。在进行斑点噪声降低后,应用具有多尺度斑点检测的 Hessian 分析来检测肿瘤。该方法检测到了每个肿瘤,但也检测到了一些非肿瘤。使用基于斑点度、内部回波和形态特征的逻辑回归模型来估计其余候选者的肿瘤可能性。将肿瘤可能性高于特定阈值(0.4)的肿瘤候选者视为肿瘤。通过使用斑点度、内部回波和形态特征的组合进行 10 倍交叉验证,所提出的 CAD 系统的灵敏度分别为 100%、90%和 70%,假阳性通过率分别为 17.4、8.8 和 2.7。我们的结果表明,基于多尺度斑点检测的 CADe 系统可用于检测 ABUS 图像中的乳腺肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验