Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
IEEE Trans Med Imaging. 2013 Sep;32(9):1698-706. doi: 10.1109/TMI.2013.2263389. Epub 2013 May 16.
Automated 3-D breast ultrasound (ABUS) has gained a lot of interest and may become widely used in screening of dense breasts, where sensitivity of mammography is poor. However, reading ABUS images is time consuming, and subtle abnormalities may be missed. Therefore, we are developing a computer aided detection (CAD) system to help reduce reading time and prevent errors. In the multi-stage system we propose, segmentations of the breast, the nipple and the chestwall are performed, providing landmarks for the detection algorithm. Subsequently, voxel features characterizing coronal spiculation patterns, blobness, contrast, and depth are extracted. Using an ensemble of neural-network classifiers, a likelihood map indicating potential abnormality is computed. Local maxima in the likelihood map are determined and form a set of candidates in each image. These candidates are further processed in a second detection stage, which includes region segmentation, feature extraction and a final classification. On region level, classification experiments were performed using different classifiers including an ensemble of neural networks, a support vector machine, a k-nearest neighbors, a linear discriminant, and a gentle boost classifier. Performance was determined using a dataset of 238 patients with 348 images (views), including 169 malignant and 154 benign lesions. Using free response receiver operating characteristic (FROC) analysis, the system obtains a view-based sensitivity of 64% at 1 false positives per image using an ensemble of neural-network classifiers.
自动三维乳腺超声(ABUS)引起了广泛关注,可能会广泛应用于致密乳腺的筛查中,因为在致密乳腺中,乳房 X 线摄影的敏感性较差。然而,阅读 ABUS 图像非常耗时,细微的异常可能会被遗漏。因此,我们正在开发一种计算机辅助检测(CAD)系统,以帮助减少阅读时间并防止错误。在我们提出的多阶段系统中,对乳房、乳头和胸壁进行分割,为检测算法提供地标。随后,提取特征描述冠状毛刺模式、团块度、对比度和深度的体素特征。使用神经网络分类器的集合,计算出一个表示潜在异常的可能性图。在可能性图中确定局部最大值,并在每个图像中形成一组候选对象。这些候选对象在第二检测阶段进一步处理,包括区域分割、特征提取和最终分类。在区域水平上,使用不同的分类器(包括神经网络集合、支持向量机、k-最近邻、线性判别和温和提升分类器)进行分类实验。使用包含 169 个恶性和 154 个良性病变的 238 名患者的 348 张图像(视图)数据集来确定性能。使用集合神经网络分类器,系统在每张图像 1 个假阳性的情况下,获得了基于视图的 64%的敏感性。