Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Phys Chem Chem Phys. 2013 Jan 28;15(4):1296-301. doi: 10.1039/c2cp42964k.
Strain confinement in heterostructured films significantly affects ionic conductivity of the electrolytes for solid oxide fuel cells based on a multi-layered design strategy. Nearly ideal tensile strain can be achieved by a dedicated manipulation of the lattice mismatch between adjacent layers and fine control of the layer thicknesses to minimize the formation of dislocations and thus to achieve optimized ionic conduction. This strategy was demonstrated by a model system of multilayered 8 mol%Y(2)O(3) stabilized ZrO(2) (YSZ) with Gd(2)Zr(2)O(7) (GZO) films, which were epitaxially grown on Al(2)O(3) (0001) substrates by pulsed laser deposition (PLD) with the {111} planes of YSZ/GZO along the Al(2)O(3) [0 1 -1 0] direction. The tensile strain (3%) resulting from the lattice mismatch can be confined in individual YSZ layers with the formation of a coherent, dislocation-free interface upon the manipulation of the layer thickness below a critical value, e.g., down to 5 nm. The strained heterostructure displays a two order-of-magnitude increase in oxide-ion conductivity as compared with bulk YSZ, and a high ionic conductivity of 0.01 S cm(-1) at 475 °C can be achieved, five times greater than that of Gd-doped ceria/zirconia. The approach of strain confinement by fine control of lattice mismatch and layer thickness represents a promising strategy in developing advanced electrolytes enabling the miniaturization of solid-state ionic devices that can be operated at low temperatures below 500 °C.
异质结构薄膜中的应变限制显著影响基于多层设计策略的固体氧化物燃料电池电解质的离子电导率。通过专门控制相邻层之间的晶格失配和精细控制层厚度,可以实现近乎理想的拉伸应变,以最小化位错的形成,从而实现优化的离子传导。通过多层 8 mol%Y(2)O(3)稳定 ZrO(2)(YSZ)与 Gd(2)Zr(2)O(7)(GZO)薄膜的模型系统证明了这一策略,该系统通过脉冲激光沉积(PLD)在 Al(2)O(3)(0001)衬底上外延生长,其中 YSZ/GZO 的{111}平面沿 Al(2)O(3)[01-10]方向。通过在层厚度低于临界值(例如,降至 5nm)时操纵晶格失配,可以将拉伸应变(3%)限制在单个 YSZ 层中,形成一个相干的、无位错界面。与体相 YSZ 相比,应变异质结构的氧离子电导率提高了两个数量级,在 475°C 时可以达到 0.01 S cm(-1)的高离子电导率,是 Gd 掺杂氧化铈/氧化锆的五倍。通过精细控制晶格失配和层厚度来限制应变的方法是一种很有前途的策略,可用于开发先进的电解质,使可以在 500°C 以下的低温下运行的固态离子器件小型化。