Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.
Plant Cell Environ. 2013 Jun;36(6):1192-203. doi: 10.1111/pce.12052. Epub 2013 Jan 10.
Phytophthora capsici causes devastating diseases on a broad range of plant species. To better understand the interaction with its host plants, knowledge obtained from a model pathosystem can be instrumental. Here, we describe the interaction between P. capsici and Arabidopsis and the exploitation of this novel pathosystem to assign metabolic pathways involved in defence against P. capsici. Inoculation assays on Arabidopsis accessions with different P. capsici isolates revealed interaction specificity among accession-isolate combinations. In a compatible interaction, appressorium-mediated penetration was followed by the formation of invasive hyphae, haustoria and sporangia in leaves and roots. In contrast, in an incompatible interaction, P. capsici infection elicited callose deposition, accumulation of active oxygen species and cell death, resulting in early pathogen encasement in leaves. Moreover, Arabidopsis mutants with defects in salicylic acid signalling, camalexin or indole glucosinolates biosynthesis pathways displayed severely compromised resistance to P. capsici. It is anticipated that this model pathosystem will facilitate the genetic dissection of complex traits responsible for resistance against P. capsici.
辣椒疫霉可对大范围的植物物种造成毁灭性的病害。为了更好地了解其与宿主植物的相互作用,从模式病理系统中获得的知识可以起到辅助作用。在这里,我们描述了辣椒疫霉与拟南芥之间的相互作用,并利用这一新的病理系统来确定参与防御辣椒疫霉的代谢途径。用不同的辣椒疫霉分离株对拟南芥品系进行接种试验,揭示了品系-分离株组合之间的相互作用特异性。在相容互作中,附着胞介导的穿透后,在叶片和根部形成侵染性菌丝、吸器和游动孢子囊。相比之下,在不相容互作中,辣椒疫霉的感染会引发胼胝质沉积、活性氧物质的积累和细胞死亡,导致叶片中早期病原体被包裹。此外,水杨酸信号转导、水杨酸甲酯或吲哚葡萄糖苷酸生物合成途径缺陷的拟南芥突变体对辣椒疫霉的抗性严重受损。预计该模式病理系统将有助于对抵抗辣椒疫霉的复杂性状进行遗传剖析。