SIFT:基于球谐去卷积的轨迹滤波。
SIFT: Spherical-deconvolution informed filtering of tractograms.
机构信息
Brain Research Institute, Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.
出版信息
Neuroimage. 2013 Feb 15;67:298-312. doi: 10.1016/j.neuroimage.2012.11.049. Epub 2012 Dec 11.
Diffusion MRI allows the structural connectivity of the whole brain (the 'tractogram') to be estimated in vivo non-invasively using streamline tractography. The biological accuracy of these data sets is however limited by the inherent biases associated with the reconstruction method. Here we propose a method to retrospectively improve the accuracy of these reconstructions, by selectively filtering out streamlines from the tractogram in a manner that improves the fit between the streamline reconstruction and the underlying diffusion images. This filtering is guided by the results of spherical deconvolution of the diffusion signal, hence the acronym SIFT: spherical-deconvolution informed filtering of tractograms. Data sets processed by this algorithm show a marked reduction in known reconstruction biases, and improved biological plausibility. Emerging methods in diffusion MRI, particularly those that aim to characterise and compare the structural connectivity of the brain, should benefit from the improved accuracy of the reconstruction.
扩散 MRI 允许使用流线追踪技术无创地在体内估计整个大脑的结构连接(“束描图”)。然而,这些数据集的生物学准确性受到与重建方法相关的固有偏差的限制。在这里,我们提出了一种方法,可以通过以改善流线重建与基础扩散图像之间的拟合度的方式,有选择地从束描图中过滤出线素来回溯性地提高这些重建的准确性。这种过滤是由扩散信号的球型反卷积的结果指导的,因此缩写为 SIFT:束描图的球型反卷积信息过滤。经过该算法处理的数据集中,已知的重建偏差明显减少,并且具有更高的生物学合理性。扩散 MRI 中的新兴方法,特别是那些旨在描述和比较大脑结构连接的方法,将受益于重建准确性的提高。