流线密度归一化:一种减轻多站点扩散磁共振成像中束状变异的稳健方法。

Streamline Density Normalization: A Robust Approach to Mitigate Bundle Variability in Multi-Site Diffusion MRI.

作者信息

Feng Yixue, Shuai Yuhan, Villalón-Reina Julio E, Chandio Bramsh Q, Thomopoulos Sophia I, Nir Talia M, Jahanshad Neda, Thompson Paul M

机构信息

Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.

出版信息

bioRxiv. 2025 Aug 22:2025.08.18.670965. doi: 10.1101/2025.08.18.670965.

Abstract

Tractometry enables quantitative analysis of tissue microstructure is sensitive to variability introduced during tractography and bundle segmentation. Differences in processing parameters and bundle geometry can lead to inconsistent streamline reconstructions and sampling, ultimately affecting the reproducibility of tractometry analysis. In this study, we introduce Streamline Density Normalization (SDNorm), a supervised two-step method designed to reduce variability in bundle reconstructions. SDNorm first computes streamline weights using linear regression to match a subject's bundle to a template streamline density map, then iteratively prunes streamlines to achieve a target density using a novel metric called (eSPD). We evaluate SDNorm across multiple bundles and acquisition protocols in dMRI data from a subset of subjects from Alzheimer's Disease Neuroimaging Initiative and demonstrate that it can significantly reduce variability in streamline density, improve consistency in along-tract microstructure profiles, and provide useful metrics for automated bundle quality control. These results suggest that SDNorm can help enhance the reproducibility and robustness of bundle reconstruction across heterogeneous image acquisition protocols and tractography settings, making it well-suited for large-scale and multi-site neuroimaging studies.

摘要

纤维束测量法能够对组织微观结构进行定量分析,但对纤维束成像和束分割过程中引入的变异性很敏感。处理参数和束几何形状的差异会导致流线重建和采样不一致,最终影响纤维束测量分析的可重复性。在本研究中,我们引入了流线密度归一化(SDNorm),这是一种有监督的两步法,旨在减少束重建中的变异性。SDNorm首先使用线性回归计算流线权重,以使受试者的束与模板流线密度图匹配,然后使用一种名为(eSPD)的新度量迭代修剪流线以达到目标密度。我们在来自阿尔茨海默病神经影像倡议的一部分受试者的dMRI数据中,对多个束和采集协议评估了SDNorm,并证明它可以显著降低流线密度的变异性,提高沿束微观结构轮廓的一致性,并为自动束质量控制提供有用的度量。这些结果表明,SDNorm有助于提高跨异构图像采集协议和纤维束成像设置的束重建的可重复性和稳健性,使其非常适合大规模和多站点神经成像研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9317/12393452/443de47d489d/nihpp-2025.08.18.670965v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索