Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
Chemistry. 2013 Jan 28;19(5):1637-46. doi: 10.1002/chem.201202237. Epub 2012 Dec 12.
The mechanism and the origin of selectivity of the asymmetric Strecker reaction catalyzed by a Ti(IV)-complex catalyst generated from a cinchona alkaloid, achiral substituted 2,2'-biphenol, and tetraisopropyl titanate have been investigated by DFT and ONIOM methods. The calculations indicate that the reaction proceeds through a dual activation mechanism, in which Ti(IV) acts as Lewis acid to activate the electrophile aldimine substrate, whereas the tertiary amine in cinchona alkaloid works as Lewis base to promote the activation and isomerization of HCN. The C-C bond formation step is predicted to be the selectivity-controlling step in the reaction with an energy barrier of 9.3 kcal mol(-1). The "asymmetric activation" is achieved by the transfer of asymmetry from the chiral cinchonine ligand to the axially flexible achiral biphenol ligand through coordination interaction with the central metal Ti(IV) . The large steric hindrance from the 3,3'-position substitute of biphenol, combined with the quinoline fragment of cinchona alkaloid and the orientation of hydrogen bonding of iPrOH, play a key role in controlling the stereoselectivity, which is in good agreement with the experimental observations.
通过密度泛函理论(DFT)和 ONIOM 方法研究了手性取代的 2,2'-联苯酚和四异丙醇钛生成的金鸡纳生物碱 Ti(IV)-配合物催化剂不对称 Strecker 反应的选择性催化机制和起源。计算表明,反应通过双重活化机制进行,其中 Ti(IV) 作为路易斯酸活化亲电亚胺底物,而金鸡纳生物碱中的叔胺作为路易斯碱促进 HCN 的活化和异构化。C-C 键形成步骤被预测为反应中的选择性控制步骤,其能垒为 9.3 kcal/mol。“不对称活化”是通过手性金鸡纳碱配体与中心金属 Ti(IV)的配位相互作用将不对称性从手性金鸡纳碱配体转移到轴向灵活的非手性联苯酚配体来实现的。联苯酚 3,3'-位取代基的大位阻,加上金鸡纳生物碱的喹啉片段和 iPrOH 的氢键取向,在手性控制中起着关键作用,这与实验观察结果一致。