Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
J Appl Physiol (1985). 2013 Mar 1;114(5):647-55. doi: 10.1152/japplphysiol.01216.2012. Epub 2012 Dec 13.
We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.
我们测试了这样一个假设,即在软骨形成微环境中,电磁场(EMF)刺激可以增强人脂肪来源干细胞(ADSCs)的软骨形成。使用二维透明质酸(HA)涂层孔(2D-HA)和三维球状体培养系统(3D-球状体)作为软骨形成微环境。将 ADSC 培养在 2D-HA 或 3D-球状体中,然后用临床使用的脉冲电磁场(PEMF)或创新的单脉冲电磁场(SPEMF)刺激进行处理。在 PEMF 或 SPEMF 处理后,分析细胞毒性、细胞活力以及软骨形成和成骨分化。本研究中使用的 PEMF 和 SPEMF 刺激模块不会引起 ADSC 的细胞毒性或改变细胞活力。PEMF 和 SPEMF 均增强了在 2D-HA 和 3D-球状体中培养的 ADSC 的软骨形成基因表达(SOX-9、胶原 II 型和聚集蛋白聚糖)。SPEMF 处理在 2D-HA 和 3D-球状体中不改变 ADSC 的骨基质基因(骨钙素和胶原 I 型)的表达,但增强了 PEMF 处理的表达。PEMF 和 SPEMF 均增加了 ADSC 的软骨基质(硫酸化糖胺聚糖)沉积。然而,PEMF 处理还增加了 ADSC 的矿化,但 SPEMF 处理没有。PEMF 和 SPEMF 均增强了在软骨形成微环境中培养的 ADSC 的软骨形成分化。SPEMF 处理增强了在软骨形成微环境中培养的 ADSC 的软骨形成,但不增强成骨作用,而 PEMF 处理在相同条件下既增强了成骨作用又增强了软骨形成作用。因此,软骨形成微环境与 SPEMF 刺激的结合可以促进 ADSC 的软骨形成分化,并且可能适用于关节软骨组织工程。
J Appl Physiol (1985). 2012-12-13
J Appl Physiol (1985). 2013-2-28
Am J Physiol Cell Physiol. 2015-2-11
Neuro Endocrinol Lett. 2008-10
Front Bioeng Biotechnol. 2025-7-10
Materials (Basel). 2025-5-31
Adv Healthc Mater. 2023-12