Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan;
Department of Family Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan;
Am J Physiol Cell Physiol. 2015 May 1;308(9):C685-96. doi: 10.1152/ajpcell.00398.2014. Epub 2015 Feb 11.
Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2-8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.
有效地将脂肪来源的干细胞 (ADSCs) 定向分化为软骨来构建关节软骨是基于 ADSC 的关节软骨组织工程的一个重要挑战。 discoidin 域受体 1 (DDR1) 已被证明影响软骨内稳态;然而,DDR1 在 ADSC 软骨分化中的作用知之甚少。在这项研究中,我们使用具有软骨诱导的三维培养球状体培养模型系统来研究 DDR1 在人 ADSCs (hADSCs) 软骨分化中的作用。实时聚合酶链反应和 Western blot 用于检测 DDR 和软骨基因的表达。硫酸乙酰肝素 (sGAG) 通过阿利新蓝和二甲亚甲基蓝 (DMMB) 测定法检测。末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记 (TUNEL) 染色用于评估细胞死亡。在 hADSCs 的软骨分化过程中,DDR1 的表达而不是 DDR2 的表达显著上调。使用短发夹 RNA 耗尽 hADSCs 中的 DDR1 表达会增加软骨基因 (SOX-9、胶原 II 型和聚集蛋白聚糖) 和软骨基质沉积 (胶原 II 型和 sGAG) 的表达,仅略微增加细胞死亡 (2-8%)。在 hADSCs 中过表达 DDR1 会降低软骨基因 (SOX-9、胶原 II 型和聚集蛋白聚糖) 和 sGAG 的表达,并增强 hADSC 的存活。此外,DDR1 耗尽的 hADSCs 表现出终端分化基因 runt 相关转录因子 2 (Runx2) 和基质金属蛋白酶 13 (MMP-13) 的表达降低。这些结果表明,DDR1 抑制可能通过增强软骨基因和软骨基质沉积的表达来增强 ADSC 软骨生成。我们提出,在 ADSCs 中抑制 DDR1 可能是优化基于 ADSC 的关节软骨组织工程的遗传修饰的候选策略。