Suppr超能文献

产酸克雷伯氏菌 9a:基于基因组的代谢再思考。

The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration.

机构信息

Department of Genomic and Applied Microbiology, and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany.

出版信息

PLoS One. 2012;7(12):e51662. doi: 10.1371/journal.pone.0051662. Epub 2012 Dec 11.

Abstract

Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. In addition, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified. High resistance of C. acidurici towards bacitracin, acriflavine and azaleucine was experimentally confirmed.

摘要

产酸克雷伯氏菌是一种厌氧、同型乙酰生成细菌,能够将尿酸等嘌呤类物质作为唯一的碳、氮和能源物质利用。与另外两种已知的嘌呤分解梭菌 C. cylindrosporum 和 C. purinilyticum 一起,产酸克雷伯氏菌 C. acidurici 是研究嘌呤发酵的模式生物。在这里,我们介绍了第一个源自嘌呤分解梭菌的全序列和基因组分析。产酸克雷伯氏菌 9a 的基因组由一条染色体(3105335 bp)和一条小的圆形质粒(2913 bp)组成。缺乏编码甘氨酸还原酶的候选基因表明,产酸克雷伯氏菌 9a 利用能量较低的甘氨酸-丝氨酸-丙酮酸途径进行甘氨酸降解。与产酸克雷伯氏菌 9a 的特殊生活方式和相应的狭窄底物谱一致,参与碳水化合物运输和代谢的基因数量明显低于其他梭菌,如 C. acetobutylicum、C. saccharolyticum 和 C. beijerinckii。能够被产酸克雷伯氏菌降解的唯一氨基酸是甘氨酸,但只有在可发酵嘌呤存在的情况下,产酸克雷伯氏菌才能在甘氨酸上生长。然而,添加甘氨酸会导致参与甘氨酸-丝氨酸-丙酮酸途径的酶编码基因的转录水平增加,如丝氨酸羟甲基转移酶和乙酰激酶,而甲酸脱氢酶编码基因的转录水平则降低。产酸克雷伯氏菌不能利用糖,但检测到完整的糖酵解基因谱。此外,还鉴定了编码对几种抗生素和金属具有抗性的酶的基因。实验证实,产酸克雷伯氏菌对杆菌肽、吖啶黄素和氮杂丝氨酸具有很高的抗性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7597/3519856/f9d234a9d7fd/pone.0051662.g001.jpg

相似文献

1
The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration.
PLoS One. 2012;7(12):e51662. doi: 10.1371/journal.pone.0051662. Epub 2012 Dec 11.
3
Purine and glycine metabolism by purinolytic clostridia.
J Bacteriol. 1983 Apr;154(1):192-9. doi: 10.1128/jb.154.1.192-199.1983.
6
Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum.
J Gen Microbiol. 1982 Jul;128(7):1457-66. doi: 10.1099/00221287-128-7-1457.
7
Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae.
J Biol Chem. 2000 Oct 6;275(40):30987-95. doi: 10.1074/jbc.M004248200.
10
Identification of a Formate-Dependent Uric Acid Degradation Pathway in .
J Bacteriol. 2019 May 8;201(11). doi: 10.1128/JB.00573-18. Print 2019 Jun 1.

引用本文的文献

1
The Effects of Specific Gut Microbiota on Hyperuricemia - A Mendelian Randomization Analysis and Clinical Validation.
Diabetes Metab Syndr Obes. 2025 Jun 10;18:1891-1902. doi: 10.2147/DMSO.S510384. eCollection 2025.
2
The role of subsp. leucine-responsive regulatory protein (Lrp) during maize xylem growth.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0085325. doi: 10.1128/aem.00853-25. Epub 2025 Jun 5.
3
genetically modified for purine nucleobase release promotes butyrate generation and colonic wound healing during DSS insult.
Gut Microbes. 2025 Dec;17(1):2490211. doi: 10.1080/19490976.2025.2490211. Epub 2025 Apr 17.
7
Gut-Kidney-Heart: A Novel Trilogy.
Biomedicines. 2023 Nov 15;11(11):3063. doi: 10.3390/biomedicines11113063.
9
A widely distributed gene cluster compensates for uricase loss in hominids.
Cell. 2023 Aug 3;186(16):3400-3413.e20. doi: 10.1016/j.cell.2023.06.010.
10
Gut bacterial metabolism contributes to host global purine homeostasis.
Cell Host Microbe. 2023 Jun 14;31(6):1038-1053.e10. doi: 10.1016/j.chom.2023.05.011. Epub 2023 Jun 5.

本文引用的文献

1
ExPASy: SIB bioinformatics resource portal.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603. doi: 10.1093/nar/gks400. Epub 2012 May 31.
3
Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis.
BMC Genomics. 2011 Jun 21;12:324. doi: 10.1186/1471-2164-12-324.
4
6
Clostridium ljungdahlii represents a microbial production platform based on syngas.
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13087-92. doi: 10.1073/pnas.1004716107. Epub 2010 Jul 2.
7
IMG ER: a system for microbial genome annotation expert review and curation.
Bioinformatics. 2009 Sep 1;25(17):2271-8. doi: 10.1093/bioinformatics/btp393. Epub 2009 Jun 27.
8
A modular system for Clostridium shuttle plasmids.
J Microbiol Methods. 2009 Jul;78(1):79-85. doi: 10.1016/j.mimet.2009.05.004. Epub 2009 May 13.
10
Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems.
Appl Environ Microbiol. 2009 Jun;75(12):4035-45. doi: 10.1128/AEM.00515-09. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验