Suppr超能文献

葡萄糖-6-磷酸脱氢酶缺乏症对心血管疾病病理生理学的影响。

Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease.

机构信息

Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H491-500. doi: 10.1152/ajpheart.00721.2012. Epub 2012 Dec 15.

Abstract

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes.

摘要

葡萄糖-6-磷酸脱氢酶(G6PD)催化戊糖磷酸途径的限速步骤,并产生 NADPH 为谷胱甘肽循环提供燃料。G6PD 缺乏是人类最常见的酶缺乏症,影响全球超过 4 亿人;然而,其对心血管疾病的影响知之甚少。谷胱甘肽途径对抗氧化防御至关重要,而 G6PD 缺乏的细胞无法很好地应对氧化损伤。有限的临床证据表明,G6PD 缺乏症可能与高血压有关。然而,也有数据支持 G6PD 缺乏症在降低心脏病和心血管相关死亡风险方面的保护作用,这可能是通过降低胆固醇合成来实现的。G6PD 缺乏症(G6PDX)小鼠的研究结果喜忧参半,既有保护作用的证据,也有有害作用的证据。G6PD 缺乏症可能通过降低胆固醇合成、超氧化物产生和还原性应激来提供保护作用。然而,最近的研究表明,G6PDX 小鼠对心肌梗死或压力超负荷诱导的心力衰竭引起的心室扩张更为敏感。此外,G6PDX 心脏在面临缺血再灌注损伤时的恢复不如非缺乏型小鼠,并且 G6PDX 小鼠易发生与年龄相关的心肌肥大。总的来说,有限的可用数据表明,在面对心脏应激时,G6PD 缺乏症的不良影响可能超过潜在的保护作用。需要在大人群中进行明确的临床研究,以确定 G6PD 缺乏症对心血管疾病发展和随后结局的影响。

相似文献

1
Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease.
Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H491-500. doi: 10.1152/ajpheart.00721.2012. Epub 2012 Dec 15.
2
Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure.
Circ Heart Fail. 2013 Jan;6(1):118-26. doi: 10.1161/CIRCHEARTFAILURE.112.969576. Epub 2012 Nov 20.
3
Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets.
Am J Physiol Endocrinol Metab. 2012 Oct 15;303(8):E959-72. doi: 10.1152/ajpendo.00202.2012. Epub 2012 Jul 24.
4
Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase.
Circulation. 2004 Feb 24;109(7):898-903. doi: 10.1161/01.CIR.0000112605.43318.CA. Epub 2004 Feb 2.
5
Deficiency Does Not Affect the Cytosolic Glutathione or Thioredoxin Antioxidant Defense in Mouse Cochlea.
J Neurosci. 2017 Jun 7;37(23):5770-5781. doi: 10.1523/JNEUROSCI.0519-17.2017. Epub 2017 May 4.
7
Glucose-6-phosphate dehydrogenase deficiency decreases vascular superoxide and atherosclerotic lesions in apolipoprotein E(-/-) mice.
Arterioscler Thromb Vasc Biol. 2006 Apr;26(4):910-6. doi: 10.1161/01.ATV.0000205850.49390.3b. Epub 2006 Jan 26.

引用本文的文献

5
NADP+/NADPH in Metabolism and its Relation to Cardiovascular Pathologies.
Curr Med Chem. 2024 Feb 16. doi: 10.2174/0109298673275187231121054541.
6
Proteomic study of left ventricle and cortex in rats after myocardial infarction.
Sci Rep. 2024 Mar 22;14(1):6866. doi: 10.1038/s41598-024-56816-6.
8
The evolution of small molecule enzyme activators.
RSC Med Chem. 2023 Sep 22;14(11):2206-2230. doi: 10.1039/d3md00399j. eCollection 2023 Nov 15.
9
Metabolic adaptations in pressure overload hypertrophic heart.
Heart Fail Rev. 2024 Jan;29(1):95-111. doi: 10.1007/s10741-023-10353-y. Epub 2023 Sep 28.

本文引用的文献

1
Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure.
Circ Heart Fail. 2013 Jan;6(1):118-26. doi: 10.1161/CIRCHEARTFAILURE.112.969576. Epub 2012 Nov 20.
3
Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho kinase and PKCβ2.
Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H989-H1000. doi: 10.1152/ajpheart.00416.2012. Epub 2012 Aug 3.
4
Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets.
Am J Physiol Endocrinol Metab. 2012 Oct 15;303(8):E959-72. doi: 10.1152/ajpendo.00202.2012. Epub 2012 Jul 24.
5
The NOX toolbox: validating the role of NADPH oxidases in physiology and disease.
Cell Mol Life Sci. 2012 Jul;69(14):2327-43. doi: 10.1007/s00018-012-1010-9. Epub 2012 May 31.
6
Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase.
Circ Res. 2012 Apr 27;110(9):1217-25. doi: 10.1161/CIRCRESAHA.112.267054. Epub 2012 Mar 27.
7
Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.
IUBMB Life. 2012 May;64(5):362-9. doi: 10.1002/iub.1017. Epub 2012 Mar 20.
8
NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone.
Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2166-77. doi: 10.1152/ajpheart.00780.2011. Epub 2012 Mar 16.
9
High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.
Nutrition. 2012 May;28(5):520-6. doi: 10.1016/j.nut.2011.09.017. Epub 2012 Feb 2.
10
NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes.
J Biol Chem. 2012 Mar 23;287(13):10379-10393. doi: 10.1074/jbc.M111.304998. Epub 2012 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验