Suppr超能文献

在遗传性肥胖和高血糖大鼠出现心脏功能障碍之前,其心脏和主动脉中烟酰胺腺嘌呤二核苷酸磷酸(NAD(P)H)氧化酶和线粒体产生的超氧化物会增加。6-磷酸葡萄糖脱氢酶衍生的烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的作用。

Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.

作者信息

Serpillon Sabrina, Floyd Beverly C, Gupte Rakhee S, George Shimran, Kozicky Mark, Neito Venessa, Recchia Fabio, Stanley William, Wolin Michael S, Gupte Sachin A

机构信息

Department of Physiology, New York Medical College, Valhalla, NY, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H153-62. doi: 10.1152/ajpheart.01142.2008. Epub 2009 May 8.

Abstract

Increased oxidative stress is a known cause of cardiac dysfunction in animals and patients with diabetes, but the sources of reactive oxygen species [e.g., superoxide anion (O(2)(-))] and the mechanisms underlying O(2)(-) production in diabetic hearts are not clearly understood. Our aim was to determine whether NADPH oxidase (Nox) is a source of O(2)(-) and whether glucose-6-phosphate dehydrogenase (G6PD)-derived NADPH plays a role in augmenting O(2)(-) generation in diabetes. We assessed cardiac function, Nox and G6PD activities, NADPH levels, and the activities of antioxidant enzymes in heart homogenates from young (9-11 wk old) Zucker lean and obese (fa/fa) rats. We found that myocardial G6PD activity was significantly higher in fa/fa than in lean rats, whereas superoxide dismutase and glutathione peroxidase activities were decreased (P < 0.05). O(2)(-) levels were elevated (70-90%; P < 0.05) in the diabetic heart, and this elevation was blocked by the Nox inhibitor gp-91(ds-tat) (50 microM) or by the mitochondrial respiratory chain inhibitors antimycin (10 microM) and rotenone (50 microM). Inhibition of G6PD by 6-aminonicotinamide (5 mM) and dihydroepiandrosterone (100 microM) also reduced (P < 0.05) O(2)(-) production. Notably, the activities of Nox and G6PD in the fa/fa rat heart were inhibited by chelerythrine, a protein kinase C inhibitor. Although we detected no changes in stroke volume, cardiac output, or ejection fraction, left ventricular diameter was slightly increased during diastole and systole, and left ventricular posterior wall thickness was decreased during systole (P < 0.05) in Zucker fa/fa rats. Our findings suggest that in a model of severe hyperlipidema and hyperglycemia Nox-derived O(2)(-) generation in the myocardium is fueled by elevated levels of G6PD-derived NADPH. Similar mechanisms were found to activate O(2)(-) production and induce endothelial dysfunction in aorta. Thus G6PD may be a useful therapeutic target for treating the cardiovascular disease associated with type 2 diabetes, if second-generation drugs specifically reducing the activity of G6PD to near normal levels are developed.

摘要

氧化应激增加是动物和糖尿病患者心脏功能障碍的已知原因,但活性氧的来源[如超氧阴离子(O(2)(-))]以及糖尿病心脏中O(2)(-)产生的机制尚不清楚。我们的目的是确定NADPH氧化酶(Nox)是否是O(2)(-)的来源,以及葡萄糖-6-磷酸脱氢酶(G6PD)衍生的NADPH是否在糖尿病中增强O(2)(-)生成中发挥作用。我们评估了年轻(9-11周龄)Zucker瘦型和肥胖(fa/fa)大鼠心脏匀浆中的心脏功能、Nox和G6PD活性、NADPH水平以及抗氧化酶活性。我们发现fa/fa大鼠的心肌G6PD活性显著高于瘦型大鼠,而超氧化物歧化酶和谷胱甘肽过氧化物酶活性降低(P<0.05)。糖尿病心脏中的O(2)(-)水平升高(70-90%;P<0.05),这种升高被Nox抑制剂gp-91(ds-tat)(50 microM)或线粒体呼吸链抑制剂抗霉素(10 microM)和鱼藤酮(50 microM)阻断。6-氨基烟酰胺(5 mM)和脱氢表雄酮(100 microM)对G6PD的抑制也降低了(P<0.05)O(2)(-)的产生。值得注意的是,fa/fa大鼠心脏中Nox和G6PD的活性被蛋白激酶C抑制剂白屈菜红碱抑制。虽然我们未检测到每搏输出量、心输出量或射血分数的变化,但Zucker fa/fa大鼠在舒张期和收缩期左心室直径略有增加,收缩期左心室后壁厚度降低(P<0.05)。我们的研究结果表明,在严重高脂血症和高血糖模型中,心肌中Nox衍生的O(2)(-)生成由G6PD衍生的NADPH水平升高提供燃料。发现类似机制可激活主动脉中O(2)(-)的产生并诱导内皮功能障碍。因此,如果开发出能将G6PD活性特异性降低至接近正常水平的第二代药物,G6PD可能是治疗2型糖尿病相关心血管疾病的有用治疗靶点。

相似文献

2
4
Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
J Mol Cell Cardiol. 2006 Aug;41(2):340-9. doi: 10.1016/j.yjmcc.2006.05.003. Epub 2006 Jul 7.
5
Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries.
Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H13-21. doi: 10.1152/ajpheart.00629.2004. Epub 2004 Sep 2.
6
Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4.
J Biol Chem. 2011 Mar 18;286(11):8977-87. doi: 10.1074/jbc.M110.193821. Epub 2011 Jan 6.
7
Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats.
Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H599-607. doi: 10.1152/ajpheart.00101.2013. Epub 2013 Jun 14.

引用本文的文献

1
Redox Imbalance in Inflammation: The Interplay of Oxidative and Reductive Stress.
Antioxidants (Basel). 2025 May 29;14(6):656. doi: 10.3390/antiox14060656.
2
Metabolic Responses to Redox Stress in Vascular Cells.
Antioxid Redox Signal. 2024 Nov;41(13-15):793-817. doi: 10.1089/ars.2023.0476. Epub 2024 Jul 10.
3
Loss-of-function G6PD variant moderated high-fat diet-induced obesity, adipocyte hypertrophy, and fatty liver in male rats.
J Biol Chem. 2024 Jul;300(7):107460. doi: 10.1016/j.jbc.2024.107460. Epub 2024 Jun 12.
4
Very low-density lipoprotein receptor mediates triglyceride-rich lipoprotein-induced oxidative stress and insulin resistance.
Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H733-H748. doi: 10.1152/ajpheart.00425.2023. Epub 2024 May 24.
5
Redox and Metabolic Regulation of Intestinal Barrier Function and Associated Disorders.
Int J Mol Sci. 2022 Nov 21;23(22):14463. doi: 10.3390/ijms232214463.
8
Computational Models on Pathological Redox Signalling Driven by Pregnancy: A Review.
Antioxidants (Basel). 2022 Mar 18;11(3):585. doi: 10.3390/antiox11030585.
9
Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis.
Int J Mol Sci. 2022 Feb 11;23(4):2017. doi: 10.3390/ijms23042017.
10
Metabolites and Genes behind Cardiac Metabolic Remodeling in Mice with Type 1 Diabetes Mellitus.
Int J Mol Sci. 2022 Jan 26;23(3):1392. doi: 10.3390/ijms23031392.

本文引用的文献

1
Role of diet and fuel overabundance in the development and progression of heart failure.
Cardiovasc Res. 2008 Jul 15;79(2):269-78. doi: 10.1093/cvr/cvn074. Epub 2008 Mar 14.
2
Cardiac energy metabolism in obesity.
Circ Res. 2007 Aug 17;101(4):335-47. doi: 10.1161/CIRCRESAHA.107.150417.
5
Diabetic cardiomyopathy revisited.
Circulation. 2007 Jun 26;115(25):3213-23. doi: 10.1161/CIRCULATIONAHA.106.679597.
7
Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
J Mol Cell Cardiol. 2006 Aug;41(2):340-9. doi: 10.1016/j.yjmcc.2006.05.003. Epub 2006 Jul 7.
8
Role of changes in cardiac metabolism in development of diabetic cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1489-506. doi: 10.1152/ajpheart.00278.2006. Epub 2006 Jun 2.
9
G protein-linked cell signaling and cardiovascular functions in diabetes/hyperglycemia.
Cell Biochem Biophys. 2006;44(1):51-64. doi: 10.1385/CBB:44:1:051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验