Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany.
Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H529-37. doi: 10.1152/ajpheart.00699.2012. Epub 2012 Dec 15.
Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.
多年前,学术界就心脏肌肉中是否存在两种功能不同的线粒体亚群(即,肌膜下线粒体(SSM)和纤维间线粒体(IFM))展开了争论。如今,人们往往忽略了这种潜在的差异。据推测,SSM 为细胞的基本功能提供 ATP,而 IFM 则为收缩装置提供能量。我们推测,存在两种可区分的亚群,它们受到压力超负荷的影响程度不同。雄性 Sprague-Dawley 大鼠接受了 20 周的横主动脉缩窄术或假手术。通过超声心动图评估收缩功能。通过电子显微镜分析心脏组织。通过差速离心分离线粒体,并使用 Clark 电极分析呼吸能力。压力超负荷导致左心室肥厚,后室壁直径增加,收缩功能受损。在对照组中,IFM 的线粒体状态 3 呼吸比 SSM 高 50%。压力超负荷显著降低了 IFM 和 SSM 中的呼吸速率,但在 SSM 中降低的程度较低。因此,在 20 周的压力超负荷后,SSM 和 IFM 之间没有差异。压力超负荷降低了总柠檬酸合酶活性,提示总线粒体含量减少。电子显微镜显示线粒体形态正常,但总线粒体体积密度降低。总之,在健康大鼠心脏中,IFM 的呼吸能力更大,并且压力超负荷对其呼吸能力的抑制作用大于 SSM。压力超负荷引起的心力衰竭消除了健康心脏中 IFM 和 SSM 之间呼吸能力的差异。IFM 对压力超负荷的强烈影响以及同时出现的线粒体和收缩功能障碍,可能支持 IFM 主要为收缩功能产生 ATP 的观点。