School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, Canadian Centre for Activity and Aging, London, ON, Canada.
Eur J Appl Physiol. 2013 Jun;113(6):1431-9. doi: 10.1007/s00421-012-2560-0. Epub 2012 Dec 15.
Triceps surae function can be modified by changes in knee joint angle through altering the effective contribution of the bi-articular gastrocnemeii. However, the impact on plantar flexor power from altering knee angle has not been studied systematically across a range of loads. Here, in 11 young men (25.7 ± 2.2 years), we determine the effect of knee angle on torque, velocity and power at loads ranging from 15 to 75 % maximal voluntary isometric contraction (MVC). Contractile properties were recorded with either the knee extended (170º) or flexed (90º). Despite similar voluntary activation (~97 %), peak twitch and MVC torques were 25 and 16 % lower in the flexed than extended knee (P < 0.05), respectively. Across all loads, subjects were 15-24 % less powerful with the knee flexed than extended (P < 0.05). In the flexed knee at relative loads ≤30 % MVC, impaired power was accompanied by 6-9 % slower shortening velocities than the extended knee. However, for the higher loads, limited torque production in the flexed knee was the key factor contributing to the generation of maximal power than for the extended position. This was supported by no change in velocity at higher loads (>30 % MVC) and a 15-22 % lower maximal rate of torque development across all loads. Hence, in a flexed knee position, which disadvantages the contribution of the gastrocnemeii, results in a left-downward shift in the torque-power relationship impairing maximal power production. Thus, the gastrocnemeii are not only a major contributor to plantar flexion torque, but also critical for modifying loaded shortening velocity and ultimately power production.
小腿三头肌的功能可以通过改变膝关节角度来改变双关节腓肠肌的有效贡献来改变。然而,改变膝关节角度对跖屈肌力量的影响尚未在一系列负荷下进行系统研究。在这里,在 11 名年轻男性(25.7±2.2 岁)中,我们确定了膝关节角度对从 15%至 75%最大随意等长收缩(MVC)的扭矩、速度和功率的影响。在膝关节伸展(170°)或弯曲(90°)的情况下记录收缩特性。尽管自愿激活相似(~97%),但在弯曲的膝关节中,峰值抽搐和 MVC 扭矩分别比伸展的膝关节低 25%和 16%(P<0.05)。在所有负荷下,与伸展的膝关节相比,弯曲的膝关节的功率降低了 15%-24%(P<0.05)。在相对负荷≤30%MVC 的弯曲膝关节中,与伸展的膝关节相比,功率降低伴随着 6%-9%的缩短速度减慢。然而,对于较高的负荷,弯曲的膝关节中扭矩产生的限制是产生最大功率的关键因素,而不是伸展位置。这得到了在较高负荷(>30%MVC)时速度没有变化的支持,并且在所有负荷下最大扭矩发展率降低了 15%-22%。因此,在弯曲的膝关节位置,腓肠肌的贡献受到不利影响,导致扭矩-功率关系向左下方移位,从而损害最大功率的产生。因此,腓肠肌不仅是跖屈扭矩的主要贡献者,而且对于改变加载缩短速度并最终产生功率也至关重要。