Health Economics Group, PenCLAHRC, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, Devon, UK.
Value Health. 2012 Dec;15(8):1084-91. doi: 10.1016/j.jval.2012.07.007. Epub 2012 Nov 4.
OBJECTIVES: The 29-item Multiple Sclerosis Impact Scale (MSIS-29) is a psychometrically validated patient-reported outcome measure increasingly used in trials of treatments for multiple sclerosis. However, it is non-preference-based and not amenable for use across policy decision-making contexts. Our objective was to statistically map from the MSIS-29, version 2, to the EuroQol five-dimension (EQ-5D) and the six-dimension health state short form (derived from short form 36 health survey) (SF-6D) to estimate algorithms for use in cost-effectiveness analyses. METHODS: The relationships between MSIS-29, version 2, and EQ-5D and SF-6D scores were estimated by using data from a cohort of people with multiple sclerosis in South West England (n=672). Six ordinary least squares (OLS), Tobit, and censored least adjusted deviation (CLAD) regression analyses were conducted on estimation samples, including the use of subscale and item scores, squared and interaction terms, and demographics. Algorithms from models with the smallest estimation errors (mean absolute error [MAE], root mean square error [RMSE], normalized RMSE) were then assessed by using separate validation samples. RESULTS: Tobit and CLAD. For the EQ-5D, the OLS models including subscale squared terms, and item scores and demographics performed comparably (MAE 0.147, RMSE 0.202 and MAE 0.147, RMSE 0.203, respectively), and estimated scores well up to 3 years post-baseline. Estimation errors for the SF-6D were smaller (OLS model including squared terms: MAE 0.058, RMSE 0.073; OLS model using item scores and demographics: MAE 0.059, RMSE 0.08), and the errors for poorer health states found with the EQ-5D were less pronounced. CONCLUSIONS: We have provided algorithms for the estimation of health state utility values, both the EQ-5D and SF-6D, from scores on the MSIS-29, version 2. Further research is now needed to determine how these algorithms perform in practical decision-making contexts, when compared with observed EQ-5D and SF-6D values.
目的:多发性硬化影响量表(MSIS-29)共有 29 个条目,是一种经过心理测量验证的患者报告结局测量工具,目前已越来越多地应用于多发性硬化治疗试验中。然而,它不是基于偏好的,也不适合在政策决策背景下使用。我们的目标是通过对来自英格兰西南部多发性硬化患者队列的数据进行统计映射,从 MSIS-29 第 2 版到 EuroQol 五维量表(EQ-5D)和六维健康状态简表(来自健康调查 36 短表的衍生)(SF-6D),来估计用于成本效益分析的算法。
方法:使用来自英格兰西南部的多发性硬化患者队列的数据(n=672),估计 MSIS-29 第 2 版与 EQ-5D 和 SF-6D 评分之间的关系。在估计样本中进行了 6 个普通最小二乘法(OLS)、Tobit 和截尾最小调整偏差(CLAD)回归分析,包括使用子量表和项目评分、平方项和交互项以及人口统计学数据。然后,使用单独的验证样本评估具有最小估计误差(平均绝对误差[MAE]、均方根误差[RMSE]、归一化 RMSE)的模型的算法。
结果:Tobit 和 CLAD。对于 EQ-5D,包括子量表平方项、项目评分和人口统计学数据的 OLS 模型表现相当(MAE 0.147,RMSE 0.202 和 MAE 0.147,RMSE 0.203),并且在基线后 3 年内可以很好地估计分数。SF-6D 的估计误差较小(OLS 模型包括平方项:MAE 0.058,RMSE 0.073;OLS 模型使用项目评分和人口统计学数据:MAE 0.059,RMSE 0.08),并且 EQ-5D 中较差健康状态的误差不那么明显。
结论:我们已经提供了从 MSIS-29 第 2 版的评分估算健康状态效用值的算法,包括 EQ-5D 和 SF-6D。现在需要进一步研究这些算法在实际决策背景下的表现,与观察到的 EQ-5D 和 SF-6D 值进行比较。
Expert Rev Pharmacoecon Outcomes Res. 2018-9-3
Health Qual Life Outcomes. 2013-12-1
Value Health Reg Issues. 2021-5
Health Qual Life Outcomes. 2019-10-15
Brain Behav. 2025-7
Front Public Health. 2023
Pilot Feasibility Stud. 2021-1-4