Canadian Centre for Applied Research in Cancer Control, British Columbia Cancer Agency, Vancouver, BC, Canada.
Health Qual Life Outcomes. 2013 Dec 1;11:203. doi: 10.1186/1477-7525-11-203.
To help facilitate economic evaluations of oncology treatments, we mapped responses on cancer-specific instrument to generic preference-based measures.
Cancer patients (n = 367) completed one cancer-specific instrument, the FACT-G, and two preference-based measures, the EQ-5D and SF-6D. Responses were randomly divided to form development (n = 184) and cross-validation (n = 183) samples. Relationships between the instruments were estimated using ordinary least squares (OLS), generalized linear models (GLM), and censored least absolute deviations (CLAD) regression approaches. The performance of each model was assessed in terms of how well the responses to the cancer-specific instrument predicted EQ-5D and SF-6D utilities using mean absolute error (MAE) and root mean squared error (RMSE).
Physical, functional, and emotional well-being domain scores of the FACT-G best explained the EQ-5D and SF-6D. In terms of accuracy of prediction as measured in RMSE, the CLAD model performed best for the EQ-5D (RMSE = 0.095) whereas the GLM model performed best for the SF-6D (RMSE = 0.061). The GLM predicted SF-6D scores matched the observed values more closely than the CLAD and OLS.
Our results demonstrate that the estimation of both EQ-5D and SF-6D utility indices using the FACT-G responses can be achieved. The CLAD model for the EQ-5D and the GLM model for the SF-6D are recommended. Thus, it is possible to estimate quality-adjusted life years for economic evaluation from studies where only cancer-specific instrument have been administered.
为了帮助促进肿瘤治疗的经济评估,我们将癌症专用量表的应答映射到通用偏好量表上。
癌症患者(n=367)完成了一个癌症专用量表 FACT-G 和两个偏好量表 EQ-5D 和 SF-6D。应答被随机分为发展(n=184)和交叉验证(n=183)样本。使用普通最小二乘法(OLS)、广义线性模型(GLM)和有截尾最小绝对离差(CLAD)回归方法来估计各量表之间的关系。通过平均绝对误差(MAE)和均方根误差(RMSE)来评估每个模型的性能,即癌症专用量表的应答预测 EQ-5D 和 SF-6D 效用的程度。
FACT-G 的身体、功能和情感健康领域得分最能解释 EQ-5D 和 SF-6D。就 RMSE 测量的预测准确性而言,CLAD 模型在 EQ-5D 中表现最佳(RMSE=0.095),而 GLM 模型在 SF-6D 中表现最佳(RMSE=0.061)。GLM 预测的 SF-6D 评分比 CLAD 和 OLS 更接近观察值。
我们的结果表明,使用 FACT-G 应答可以估计 EQ-5D 和 SF-6D 效用指数。推荐使用 CLAD 模型估计 EQ-5D,使用 GLM 模型估计 SF-6D。因此,仅使用癌症专用量表进行的研究中,有可能从经济评估中估计质量调整生命年。