Suppr超能文献

基于统计方法和领域知识的挥发性有机化合物的 log P(liver) 值预测的 QSPR 模型。

QSPR models for predicting log P(liver) values for volatile organic compounds combining statistical methods and domain knowledge.

机构信息

Planta Piloto de Ingeniería Química-PLAPIQUI, CONICET-UNS, La Carrindanga km 7, Bahía Blanca 8000, Argentina.

出版信息

Molecules. 2012 Dec 17;17(12):14937-53. doi: 10.3390/molecules171214937.

Abstract

Volatile organic compounds (VOCs) are contained in a variety of chemicals that can be found in household products and may have undesirable effects on health. Thereby, it is important to model blood-to-liver partition coefficients (log P(liver)) for VOCs in a fast and inexpensive way. In this paper, we present two new quantitative structure-property relationship (QSPR) models for the prediction of log P(liver), where we also propose a hybrid approach for the selection of the descriptors. This hybrid methodology combines a machine learning method with a manual selection based on expert knowledge. This allows obtaining a set of descriptors that is interpretable in physicochemical terms. Our regression models were trained using decision trees and neural networks and validated using an external test set. Results show high prediction accuracy compared to previous log P(liver) models, and the descriptor selection approach provides a means to get a small set of descriptors that is in agreement with theoretical understanding of the target property.

摘要

挥发性有机化合物(VOCs)包含在各种化学品中,这些化学品可以在家庭产品中找到,并且可能对健康产生不良影响。因此,以快速且廉价的方式对 VOCs 的血-肝分配系数(log P(liver))进行建模非常重要。在本文中,我们提出了两种新的定量结构-性质关系(QSPR)模型来预测 log P(liver),其中我们还提出了一种混合方法来选择描述符。这种混合方法结合了机器学习方法和基于专家知识的手动选择。这允许获得一组在物理化学方面可解释的描述符。我们的回归模型使用决策树和神经网络进行训练,并使用外部测试集进行验证。结果表明,与之前的 log P(liver)模型相比,预测精度较高,并且描述符选择方法提供了一种获取与目标性质的理论理解一致的少量描述符的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f379/6268846/5f7f5e23e06e/molecules-17-14937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验