Instituto de Ciencias e Ingeniería de la Computación (UNS-CONICET), Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur (UNS), CP 8000, Bahía Blanca, Argentina.
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Calle 526 between 10 and 11, CP 1900, La Plata, Argentina.
Biomed Res Int. 2019 Feb 17;2019:2905203. doi: 10.1155/2019/2905203. eCollection 2019.
The selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.
在定量构效关系(QSAR)建模中,选择最相关的分子描述符来描述目标变量是一个具有挑战性的组合优化问题。本文提出了一种用于解决回归和分类建模中这一任务的新型软件工具。实现该工具的方法分为两个阶段。第一阶段使用多目标进化技术来执行描述符子集的选择。第二阶段对所选描述符子集进行外部验证,以提高可靠性。该工具的功能通过一个案例研究来说明,该案例研究用于估计可生物降解性作为分类 QSAR 建模的一个示例。所得到的结果表明了这种新型软件工具的有用性和潜力,它旨在减少药物发现过程中的开发时间和成本。