Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.
J Biomol NMR. 2013 Jan;55(1):119-38. doi: 10.1007/s10858-012-9696-4. Epub 2012 Dec 18.
Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.
人类 hnRNP A1 是一种多功能蛋白,参与核酸处理的多个方面,如选择性剪接、微 RNA 生成、核细胞质 mRNA 运输和端粒生成和维持。hnRNP A1 的 N 端区域,也称为解旋蛋白 1(UP1),由两个紧密相关的 RNA 识别基序(RRM)组成,后面是一个 C 端富含甘氨酸的区域。尽管 UP1 的晶体结构揭示了 RRM1 和 RRM2 之间的域间相互作用,无论是在 UP1 的自由形式还是结合形式中,但这些相互作用从未在溶液中建立过。此外,hnRNP A1 的 RRMs 在 UP1 的自由和结合晶体结构中的相对取向不同,这引发了关于该结构域运动的生物学意义的问题。在本研究中,我们使用 NMR 光谱学结合分段同位素标记技术,仔细分析了溶液中存在的 RRMs 间相互作用,随后确定了 UP1 在溶液中的结构。我们的数据明确证明 hnRNP A1 的 RRMs 在溶液中相互作用,令人惊讶的是,在溶液中观察到的两个 RRMs 的相对取向与在自由 UP1 的晶体结构中发现的不同,而更类似于在蛋白与核酸结合形式中观察到的相对取向。这强烈支持了 hnRNP A1 的两个 RRMs 具有单个定义的相对取向的观点,该构象先前在结合形式中观察到,现在使用 NMR 在溶液中观察到。很可能自由形式晶体结构中的构象是由晶体接触诱导的不太稳定的形式。重要的是,含有多个 RRMs 的蛋白质中 RRMs 的相对取向强烈影响这些蛋白质实际可获得的 RNA 结合拓扑结构。事实上,RRM 结构域是不对称的结合平台,以单个定义的取向与单链核酸接触。因此,核酸分子在多个 RRM 结构域上的路径强烈依赖于 RRMs 是否相互作用。简要回顾了多 RRM 结构域的不同核酸识别模式,并根据当前的结构信息进行了分析。