Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
J Immunol. 2013 Jan 15;190(2):586-96. doi: 10.4049/jimmunol.1200119. Epub 2012 Dec 17.
Lymphoid organs exhibit complex structures tightly related to their function. Surprisingly, although the thymic medulla constitutes a specialized microenvironment dedicated to the induction of T cell tolerance, its three-dimensional topology remains largely elusive because it has been studied mainly in two dimensions using thymic sections. To overcome this limitation, we have developed an automated method for full organ reconstruction in three dimensions, allowing visualization of intact mouse lymphoid organs from a collection of immunolabeled slices. We validated full organ reconstruction in three dimensions by reconstructing the well-characterized structure of skin-draining lymph nodes, before revisiting the complex and poorly described corticomedullary organization of the thymus. Wild-type thymi contain ~200 small medullae that are connected to or separated from a major medullary compartment. In contrast, thymi of immunodeficient Rag2(-/-) mice exhibit only ~20 small, unconnected medullary islets. Upon total body irradiation, medullary complexity was partially reduced and then recovered upon bone marrow transplantation. This intricate topology presents fractal properties, resulting in a considerable corticomedullary area. This feature ensures short distances between cortex and medulla, hence efficient thymocyte migration, as assessed by mathematical models. Remarkably, this junction is enriched, particularly in neonates, in medullary thymic epithelial cells expressing the autoimmune regulator. The emergence of a major medullary compartment is induced by CD4(+) thymocytes via CD80/86 and lymphotoxin-α signals. This comprehensive three-dimensional view of the medulla emphasizes a complex topology favoring efficient interactions between developing T cells and autoimmune regulator-positive medullary thymic epithelial cells, a key process for central tolerance induction.
淋巴器官呈现出与功能紧密相关的复杂结构。令人惊讶的是,尽管胸腺髓质构成了一个专门的微环境,专门用于诱导 T 细胞耐受,但由于其主要在二维层面上通过胸腺切片进行研究,因此其三维拓扑结构在很大程度上仍未被揭示。为了克服这一限制,我们开发了一种用于三维全器官重建的自动化方法,允许从一系列免疫标记切片中可视化完整的小鼠淋巴器官。我们通过重建特征明确的皮肤引流淋巴结的完整器官三维结构来验证三维全器官重建的有效性,然后重新探讨胸腺复杂而描述不佳的皮质-髓质组织。野生型胸腺包含200 个小髓质,这些小髓质与主要髓质隔室相连或分开。相比之下,免疫缺陷 Rag2(-/-) 小鼠的胸腺只包含20 个小的、不相连的髓质岛。全身照射后,髓质复杂性部分降低,随后在骨髓移植后恢复。这种复杂的拓扑结构呈现出分形特性,导致皮质-髓质区域相当大。这种特征确保了皮质和髓质之间的短距离,从而促进了胸腺细胞的有效迁移,这可以通过数学模型来评估。值得注意的是,特别是在新生儿中,表达自身免疫调节因子的髓质胸腺上皮细胞中,这种连接富含这种结构。主要髓质隔室的出现是由 CD4(+) 胸腺细胞通过 CD80/86 和淋巴毒素-α 信号诱导的。这种对髓质的全面三维观察强调了一种复杂的拓扑结构,有利于发育中的 T 细胞与自身免疫调节因子阳性的髓质胸腺上皮细胞之间的有效相互作用,这是中枢耐受诱导的关键过程。