Interdisciplinary Nanoscience Centre (iNANO), Center for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
Biochemistry. 2013 Jan 8;52(1):264-76. doi: 10.1021/bi301258e. Epub 2012 Dec 26.
Thermomyces lanuginosus lipase (TlL) is a kinetically stable protein, resistant toward both denaturation and refolding in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant decyl maltoside (DecM). We investigate the pH dependence of this kinetic stability. At pH 8, TlL remains folded and enzymatically active at multimillimolar surfactant concentrations but fails to refold from the acid urea-denatured state at submillimolar concentrations of SDS and DecM, indicating a broad concentration range of kinetic trapping or hysteresis. At pH 8, very few SDS molecules bind to TlL. The hysteresis SDS concentration range shrinks when moving to pH 4-6; in this pH range, SDS binds as micellelike clusters. Although hysteresis can be eliminated by reducing disulfide bonds, destabilizing the native state, and lowering the unfolding activation barrier, SDS sensitivity is not directly linked to intrinsic kinetic stability [its resistance to the general chemical denaturant guanidinium chloride (GdmCl)], because TlL unfolds more slowly in GdmCl at pH 6.0 than at pH 8.0. However, the estimated net charge drops from approximately -12 to approximately -5 between pH 8 and 6. SDS denatures TlL at pH 6.0 by nucleating via a critical number of bound SDS molecules on the surface of native TlL to form clusters. These results imply that SDS sensitivity is connected to the availability of appropriately charged regions on the protein. We suggest that conformational rigidity is a necessary but not sufficient feature of SDS resistance, because this has to be combined with sufficient negative electrostatic potential to avoid extensive SDS binding.
嗜热丝孢菌脂肪酶(TlL)是一种动力学稳定的蛋白质,在离子表面活性剂十二烷基硫酸钠(SDS)和非离子表面活性剂麦芽糖苷十烷基(DecM)存在的情况下,既耐受变性也耐受复性。我们研究了这种动力学稳定性的 pH 依赖性。在 pH 8 时,TlL 在多毫摩尔表面活性剂浓度下保持折叠状态和酶活性,但在亚毫摩尔 SDS 和 DecM 浓度下无法从酸脲变性状态复性,表明存在广泛的动力学捕获或滞后浓度范围。在 pH 8 时,很少有 SDS 分子与 TlL 结合。当移动到 pH 4-6 时,滞后 SDS 浓度范围缩小;在这个 pH 范围内,SDS 结合成胶束样簇。尽管通过减少二硫键、破坏天然状态和降低展开活化能垒可以消除滞后,但 SDS 敏感性与内在动力学稳定性没有直接联系[其对通用化学变性剂盐酸胍(GdmCl)的抗性],因为 TlL 在 pH 6.0 下比在 pH 8.0 下在 GdmCl 中展开得更慢。然而,在 pH 8 和 6 之间,估计的净电荷从大约-12 下降到大约-5。在 pH 6.0 时,SDS 通过在天然 TlL 表面上结合临界数量的结合 SDS 分子来成核,从而使 TlL 变性。这些结果表明,SDS 敏感性与蛋白质上适当带电区域的可用性有关。我们认为构象刚性是 SDS 抗性的必要但非充分特征,因为这必须与足够的负静电势结合,以避免广泛的 SDS 结合。